Why do you need CT in the oil and gas industry?

WHY DO YOU NEED CT IN THE OIL AND GAS INDUSTRY?

GEODICT

MOTIVATION AND WORKFLOW

- → Digital Core Analysis improves understanding of reservoir properties
- → DRP digitalizes (Special) Core Analysis and saves time & costs in comparison to SCAL experiments

Polling Question #1

The second se

At what stage is CT used in the development and production process of oil and gas reservoirs?

AT WHAT STAGE IS **CT** USED IN THE DEVELOPMENT AND PRODUCTION PROCESS OF OIL AND GAS RESERVOIRS?

Upstream Sector

- Exploration and production (E&P)
 - a) Finding crude **oil** and natural **gas** deposits
 - b) Producing them

- Typically requires drill cores (*cuttings*)
- Upstream Sector (Exploration & Production):

Improved well placement

Reservoir characterization (porosity, permeability,...)

Primary Production, Secondary Production, Tertiary/Enhanced Oil Recovery (EOR) Production

Data input for reservoir simulators

Predictions for management decisions

- → Results taken from CT lead to more efficient and effective exploration and production activities.
- Research & Development (R&D):
 - Refine methods for CT & DRP (e.g., calibration) Develop new workflows Gain new insights on rock properties

GEODICT

How do you scale the CT analysis results to guide decision-making applied to km-size reservoirs?

DIGITAL ROCK PHYSICS – SCALES

GEODICT

FROM NANO-PORE SYSTEM TO RESERVOIR SCALE

Polling Question #2

and the second division of the second divisio

Lightning Round

When should we use digital rock physics and when should we use experiments?

WHEN SHOULD WE USE DIGITAL ROCK PHYSICS AND WHEN SHOULD WE USE EXPERIMENTS?

Simulations:

Pros

- Non-destructive
- Can model complex processes that are difficult or impossible to measure directly
- Can be easily repeated and modified
- Can be used to optimize production and reduce costs
- Scalability

Example: Sandstone with high clay content

- Clay contents are usually not resolved by μ CT resolution

Example: High sample throughput

- Digital simulation not limited by lab equipment
- → Best results are achieved by complementing both approaches

Experiments:

Pros

- Necessary if high resolution images of the sample are not available
- Provides direct measurements and data
- Can validate theoretical models and simulations

GEODICT

How do you correlate the simulation and experiments?

MERCURY INTRUSION CAPILLARY PRESSURE (MICP)

porosity

SATUDICT HIDDEN POROSITY

10000

1000

100

10

0.1

Issue:

by Berg et al. (2016)

Hg-air capillary pressure (PSIA)

Tackling the unresolved porosity in CT images

- A key finding for comparing lab MICP with DRP results
- Recommended for Digital Core Analysis workflows

Gildehauser sandstone Berg et al. (2016)

GEODICT

GeoDict MICP RAM usage: 7 GB runtime: 0.5 h

from digital MICP by Linden & Wiegmann (2023)

Berg et al., Connected pathway relative permeability from pore-scale imaging of imbibition, (2016) https://doi.org/10.1016/j.advwatres.2016.01.010

Linden & Wiegmann, Quantification of the hidden porosity in 3D digital scans of rocks, (2023), in preparation.

Polling Question #3

the second se

What are the challenges you see in applying digital rock physics to a practical decision-making process?

WHAT ARE THE CHALLENGES YOU SEE IN APPLYING DIGITAL ROCK PHYSICS TO A PRACTICAL DECISION-MAKING PROCESS?

- Data availability: High-quality input data, such as micro-CT images.
- Computational resources: Digital rock physics models require efficient algorithms to work cost & time efficient
- **Upscaling:** Integration of DRP results to well and field scale
- Validation: Company-specific validation workflows
- Automation: Integration of proofed workflows into the production environment

GEODICT

What is the difference between regions that can produce oil effectively and the ones that can't?

WHAT IS THE DIFFERENCE BETWEEN REGIONS THAT CAN PRODUCE OIL EFFECTIVELY AND THE ONES THAT CAN'T?

Quality of transport properties of the oil-bearing formation

- Permeability
- Porosity
- Pore connectivity
- Properties of oil and associated fluids
- Favorable trapping conditions
- Abundance and preservation of organic-rich sedimentary rocks (source rock)
- Favorable history of burial and deformation of rocks

GEODICT

© Math2Market GmbH

PORTFOLIO: GEODICT[®] FOR DRP

GEODICT

IMAGE PROCESSING AND IMAGE ANALYSIS

... and many more features

© Math2Market GmbH

PORTFOLIO: GEODICT[®] FOR DRP

GEODICT

ROCK PROPERTY SIMULATIONS

				Material Information: ID 00: Water [invis.] ID 01: Calcite ID 15: Dissolved
1-phase Flow Properties	2-phase Flow Properties	Electrical & Thermal Properties	Mechanical Properties	Particle & Molecule Transport
Absolute permeability Navier Stokes-Brinkman Darcy flow Upscaling of Flow Structures >4000 ³	 Pore Morphology Method Capillary pressure curve Relative permeability Mixed wettability systems 	 Electrical Conductivity Formation factor Resistivity index Saturation exponent Cementation exponent Thermal Conductivity 	 Young's modulus Poisson's ratio Bulk & Shear modulus Stiffness In-Situ conditions Poroelasticity 	 Transport and deposition Fines migration Breakthrough curves Reactive Flow CO2 sequestration NMR T2 curve

... and many more features

NEXT ON ASK THE EXPERT

Filtration Simulation – How to Make the R&D Cycle More Efficient

With Dr. Philipp Eichheimer

Wednesday, June 14, at 1 PM CDT

