WELCOME TO RIGAKU VIRTUAL WORKSHOP DEEP DIVE: FILTRATION ANALYSIS 1. Data Collection

Riga

Presenter: **Angela Criswell** | Senior Scientist Co-presenter: **Aya Takase** | Director of X-ray Imaging Host: **Tom Concolino** | Analytical X-Ray Consultant

GEODICT The Digital Material Laboratory

Phillip Eichheimer, Ph.D. | Math2Market Application Engineer

You can ask questions during the presentation. We might turn on your microphone for further discussions.

Recording will be available tomorrow.

Filtration Analysis – 1. Data Collection Virtual Workshop presented by Angela Criswell

FILTRATION ANALYSIS SERIES

- 1. Data collection
- 2. Segmentation and property analyses
- 3. Filtration simulations

THINGS WE'LL COVER

- Filtration basics
- How to collect high-quality CT data for filter media
- How to evaluate image quality and suitability for fiber analysis

nano3DX by Rigaku High resolution and high contrast for soft materials

GeoDict by Math2Market The Digital Material Laboratory

WHAT IS FILTRATION?

Filtration

The process in which solid particles in a liquid or gaseous fluid are removed using a filter medium that permits the fluid to pass through but retains the solid particles

MANY INDUSTRIES UTILIZE FILTRATION

DIFFERENT LENGTH SCALES FOR FILTERS

Complete filter

Pleated filter

mm – m

mm

Filter media

Sutherland, K., 2008. "Filters and filtration handbook," 5th ed. Elsevier/Butterworth-Heinemann, Oxford.

WHAT MIGHT WE ALREADY KNOW?

- Particle size range for contaminants we want to filter.
- Manufacturing condition and possibly some preliminary tests
 - Grammage (mass per unit area)
 - Fiber dimensions (diameter, length, shape)
 - Binder material and volume percentage
 - Particle capture efficiency (d_{10}, d_{50}, d_{90})

2 Rigaku

HOW DO WE ACHIEVE HIGH RESOLUTION?

X-RAY SOURCE (Cr, Cu, Mo, W)

X-RAY ENERGY

- nano3DX (selectable target)
 - Cr, Cu, Mo

Cr target 5.4 keV

PARALLEL BEAM GEOMETRY

WHAT DATA COLLECTION SETTINGS SHOULD WE CONSIDER?

What happens when we image with different voxel size?

What happens when we image filter with differing voxel sizes?

Rule of thumb: Voxel size should be < 0.2 * fiber diameter

What happens when we image filter with differing voxel sizes?

What is the optimal signal-to-noise?

What is the optimal signal-to-noise?

Z: 81 / 160

15 min

60 min

120 min

300 min

What is the optimal signal-to-noise?

WHAT TYPE OF ANALYSES CAN WE DO FOR FILTER MEDIA?

FILTER MEDIA ANALYSIS

Porosity Fiber diameter Fiber orientation Fiber modelling Initial pressure drop Pore size distribution Percolation paths Filter efficiency

FILTER MEDIA ANALYSIS

Porosity Fiber diameter Fiber orientation Fiber modelling Initial pressure drop Pore size distribution Percolation paths Filter efficiency

2

THINGS WE COVERED

- Filtration basics
- How to collect high-quality CT data for filter media
- How to evaluate image quality and suitability for fiber analysis

Q & A SESSION

We'll follow up with your questions.

Recording will be available tomorrow.

Register for the next workshop.

Next: Filtration Analysis 2. Segmentation & property analyses

Ricc

November 16th Wednesday 11:00 am PDT / 2:00 pm EDT

THANK YOU FOR JOINING US SEE YOU NEXT TIME

