WELCOME

RIGAKU WEBINAR SERIES X-RAY COMPUTED TOMOGRAPHY FOR MATERIALS SCIENCE *FOAMS AND COMPOSITES APPLICATIONS* IS STARTING NOW.

Presenter: Aya Takase

Senior Scientist Rigaku Americas Corporation

Host: Tom McNulty

Senior Vice President Rigaku Americas Corporation

You can send us questions during the presentation. They will be addressed at the end of the presentation.

A recording of this webinar will be available. You will receive an email with a link to it tomorrow.

X-RAY COMPUTED TOMOGRAPHY FOR MATERIALS SCIENCE Foams and Composites Applications

1827

Wikimedia Commons: "View from the Window at Le Gras" Joseph Nicéphore Niépce

Library of Congress Prints and Photographs Division - digital ID cph.3a20638

You will learn: Keys to high-resolution imaging Foams applications Composites applications

50000

WHY HIGH RESOLUTION?

Foam cell size ~ microns – millimeters

Fiber diameter ~ 5 – 30 microns

Optimize X-ray energy

Optimize resolution

WHAT RESOLUTION IS HIGH ENOUGH?

Large voxel

WHAT DETERMINES RESOLUTION FUNCTION?

Focus sizeDefocus etc.Pixel sizeResolutionDriftingfunction

Spatial resolution

HOW DO YOU TEST RESOLUTION?

QRM Micro-CT BarPattern Phantom www.qrm.de

QRM Micro-CT BarPattern NANO www.qrm.de

Voxel size 2.2 μm

0.1 – 15 μm (2D)

JIMA RT RC-02B www.jima.jp

Voxel/pixel size 0.27 µm

HOW DOES THIS AFFECT ANALYSIS RESULTS?

Porosity ?

Porosity = 96.7 vol%

HOW DO YOU ACHIEVE HIGH RESOLUTION?

KEYS TO HR IMAGING

- Use high magnification factor
- Use parallel beam geometry

- Eliminate sample movement
- Eliminate sample deformation
- Run a fast scan

- Eliminate sample movement
- Eliminate sample deformation
- Run a fast scan

WHAT IS FOCUS CORRECTION?

HOW DO YOU CORRECT FOCUS?

- Eliminate sample movement
- Eliminate sample deformation
- Run a fast scan

Still sample

Moving sample

HOW DO YOU PREVENT THIS?

Secure the sample

UV resin

Ероху

Utility wax

Carbon tape

Double-sided tape

Wait long enough

Current image – Last image

What if the sample is unstable?

- Eliminate sample movement
- Eliminate sample deformation
- Run a fast scan

Unwoven fabric

129 min

12 min

KEYS TO HR IMAGING

- Use high magnification factor
- Use parallel beam geometry

- Eliminate sample movement
- Eliminate sample deformation
- Run a fast scan

WHAT CAN WE DO WITH CT FOR FOAMS?

FOAM APPLICATIONS

- Porosity
- Filler distribution
- Cell size/shape distribution
- Cell wall thickness
- Cell morphology visualization

LET'S COMPARE EAR PLUGS

Store brand A

Store brand B

ARE ALL MAKEUP SPONGES THE SAME?

GLAMOUR March 10, 2016 "Your Ultimate Guide to Makeup Sponges"

Premium brand \$20

Store brand \$5

Premium brand \$20

Polymer / cells

Store brand \$5

Polymer / filler / cells

Premium brand \$20

Polymer = 9.3 vol%

Store brand \$5

Polymer = 9.0 vol% Filler = 3.3 vol%

Brand new

7-month old

Brand new

7-month old

Porosity = 90.7 vol%

7-month old

Porosity = 84.4 vol%

CAN YOU ANALYZE CELL WALL THICKNESS?

Insulator

Insulator

Porosity 96.7 vol%

Wall thickness

Wall thickness Mean 4.6 µm Max. 23.3 µm

Thin

Thick

Thickness Mesh from foam1 Target 2 - Thickness (Micrometers) 0.00 2.91 5.82 8.73 11.64 14.54 17.45 20.36 23.27

CAN YOU COMPRESS FOAMS?

FOAM APPLICATIONS

- Porosity
- Filler distribution
- Cell size/shape distribution
- Cell wall thickness
- Cell morphology visualization

WHAT CAN WE DO WITH CT FOR COMPOSITES?

COMPOSITE APPLICATIONS

- Volume fraction
- Fiber/filler distribution
- Fiber orientation
- Voids distribution
- Crack visualization

LET'S LOOK AT CARBON FIBERS

Voids in CFRP

Filler 12 vol%

Filler 35 vol%

Wood composites

Solid 98.7 vol%

Solid 80.9 vol%

CAN YOU SEE DAMAGES/CRACKS?

Smartphone camera lens

WHAT ABOUT SMALL CRACKS?

Contrasting agent recipe

250 g zinc iodide80 ml distilled water80 ml isopropyl alcohol1 ml Kodak Photo-Flo

Soak for 1 - 2 days

Cracks in CFRP

w/o contrast agent

with contrast agent

WHERE ARE THE CRACKS?

SiC fibers in SiC matrix @ Mo 17 keV

SiC fibers in SiC matrix

SiC fibers in SiC matrix

SiC fibers in SiC matrix

COMPOSITE APPLICATIONS

- Volume fraction
- Fiber/filler distribution
- Fiber orientation
- Voids distribution
- Crack visualization

You just learned: Keys to high-resolution imaging Foams applications Composites applications

00000

ALL IMAGES WERE COLLECTED ON...

nano3DX CT Lab HX CT Lab GX

To learn more ...

Rigaku.com → Contact

PREVIOUS WEBINARS

www.rigaku.com/en/webinars/ x-ray_ct_introduction

X-ray Microscopy Seminar & Workshop April 1st Wednesday University of Delaware, Newark, DE

Q & A SESSION

Aya Takase

Tom McNulty

We'll follow up with your questions.

Recording will be available tomorrow.

Send your ideas to aya.takase@rigaku.com

