APPLICATION NOTE NO. 20101936

Cu SEED COMPOSITION AND THICKNESS

Rigaku

XwinSys

PCB PANEL

INTRODUCTION

Seed copper is deposited during the PCB manufacturing process, often over other Cu layers, a process that requires accuracy in the thickness of this thin layer. Measurement of the seed layer thickness for quality assurance is available using Energy Dispersive X-ray Fluorescence (EDXRF), which overcomes the challenge of differentiating seed copper from the Cu layer beneath.

XRF ANALYSIS

- · XRF results of sample surface
- The following elements were detected: Cu, Al, Si, S, Fe, Ni, Cu
- · Further analysis examples:
 - Light element detection
 - · What other elements should be expected?

Acquisition time: 30 sec

Before Wet Etch

After Wet Etch

WET ETCH

- Etch performed by dipping the sample (for one minute) in a solution containing:
 - $H_2^{0}(3\%)$
 - Citric acid
 - NaCl

MEASUREMENT OBJECTIVE

• To measure the thickness of the top, electroless-deposited Cu seed layer at several sample locations.

Electroless Cu seeding (1 µm)

ABF (30 µm) [organic dielectric film]

Copper (10-20 µm)

FR-4 (150+ µm) [PCB base material]

The ABF enables electroless seeding.

- ABF, Ajinmoto Build-up Film, is a carbonbased epoxy film developed by Ajinmoto Co.
- FR-4, flame retardant class 4, is a type of laminated substrate material used in the manufacture of printed circuit boards (PCBs).

TOP Cu LAYER ISOLATION

- The top Cu layer was removed from one of the samples using wet etch.
- XRF comparison was made between etch and non-etch samples.
- Cu La comes only from the top Cu layer.

Cu La SATURATION TEST

- For the top Cu layer, 1 µm is much below the saturation depth.
- Saturation in XRF is a specific depth of the layer whereby intensity no longer changes beyond this layer thickness.
- Thickness changes correlate to changes in the current.
- XRF measurement was performed at the same location using varying currents in order to determine the ideal linear section of the intensity vs. current curve.

Cu THICKNESS SAMPLE COMPARISON

- XRF scan was performed over six points (1 mm step) on three different samples.
- Cu Lα peak intensity was compared.
- The average intensity of Samples B and C were used as reference with thickness of 1 $\mu m.$
- Sample A has significantly thinner top Cu layer than Samples B and C.
- The top Cu layer of Samples B and C has uniform thickness, unlike Sample A.

INTENSITY VS. CURRENT

ntensity [CPS]

Current [A]

ACROSS-WAFER VARIATION

Cu LAYER THICKNESS [µm]

Point	Sample A	Sample B	Sample C
1	0.42	1.00	1.00
2	0.52	1.01	1.01
3	0.64	1.01	1.01
4	0.65	1.01	0.98
5	0.74	0.97	1.01
6	0.78	0.99	0.99
Average	0.62	1.00	1.00

Cu SEED THICKNESS MEASUREMENT BY DIRECT AND INDIRECT METHODS

- Cu layer thickness is measured by an automated algorithm using two methods.
- Direct method (0–0.7 $\mu m)$ measuring the Cu La peak and calculating Cu layer thickness using linear regression
- Indirect method (0.7–1.4 $\mu m)$ measuring the Si Ka peak and calculating Cu layer thickness using exponential regression
- Cu Lα peak intensity is saturated due to its low energy (0.93 keV), so the Cu layer thickness is measured indirectly using the Si from the ABF layer.

- Cu Lα and Si Lα were clearly detected by the EDXRF.
- Cu upper layer thickness can be monitored by using both peaks independently – Cu Lα or Si Kα peaks.
- · Acquisition time: 12 sec

Nominal [µm]	Direct Method [µm]	Indirect Method [µm]
0.4	0.398	0.382
0.5	0.496	0.462
0.6	0.613	0.571
0.7	0.689	0.704
0.8	-	0.788
0.9	-	0.888
1.0	-	0.960
1.1	-	1.083

REGRESSION CURVES

- · Linear regression for the direct method
- Exponential regression for the indirect method

ROUGHNESS

- 3D scanner was used for measuring roughness by measuring surface height variations.
- Height variation up to 2 μm

3D SCAN IMAGING

Resolution: 10 μm step 0.5 mm x 0.5 mm area

2D MICROSCOPE IMAGE

Magnification: X50

SURFACE HEIGHT SCAN

200

150

SURFACE HEIGHT SCAN

X-Coordinate [µm]

250

300

400

350

450

SUMMARY

Height [µm]

0

50 100

- The XRF is very sensitive to thickness variation up to 0.1 nm. Many elements can be analyzed, qualitatively and quantitatively.
- Top Cu layer thickness can be measured using Cu Lα peak intensity changes.
- For accurate results, standards are required.
- The 3D scanner can monitor surface roughness.

RIGAKU AMERICAS CORPORATION 9009 New Trails Drive, The Woodlands, TX 77381 T +1 (281) 362 2300 | F +1 (281) 364 3628 info@rigaku.com | rigaku.com