

BENEATH THE SURFACE: X-RAY ANALYSES OF BATTERY MATERIALS AND STRUCTURES

A Battery Webinar Series by Rigaku

Non-destructive Inspection of Batteries Using X-ray Computed Tomography

Starting at 1 pm CDT

- You will be muted during the webinar.
- You can ask questions using the Q&A tool.
- You should hear music if your sound is working.

BENEATH THE SURFACE: X-RAY ANALYSES OF BATTERY MATERIALS AND STRUCTURES

A Battery Webinar Series by Rigaku

Non-destructive Inspection of Batteries Using X-ray Computed Tomography

Starting at 1 pm CDT

We are starting now...

© 2024 — RIGAKU HOLDINGS CORPORATION AND ITS GLOBAL SUBSIDIARIES. ALL RIGHTS RESERVED.

Presenter: **Angela Criswell** | Director of X-ray Imaging Co-presenter: **Tim Bradow** | Sr. Business Development Manager Host: **Aya Takase** | Head of Global Marketing

You can ask questions following the presentation.

Recording will be available tomorrow.

Non-destructive inspection of batteries using X-ray computed tomography

We will discuss:

- What is X-ray CT?
- What are the considerations when using X-ray CT for battery research?
- What information can we extract from CT data about batteries?
- Battery analysis examples

Polling Question #1

Microsoft Stock

What is X-ray CT?

What are the considerations when using X-ray CT for battery research?

X-ray CT experiment considerations

- X-ray energy
- Image contrast
- Spatial resolution
- Field of view (FOV)
- Signal-to-noise
- Experiment type

X-ray energy & image contrast

X-ray CT is an X-ray absorption technique

 \rightarrow

Thin

• Bremsstrahlung vs. characteristic radiation

- X-ray energy
 - Bremsstrahlung radiation (change applied voltage, kV)

- X-ray energy
 - Characteristic radiation (change target material Cu, Mo)

-40kV

60kV

-90kV

—130kV

100

- X-ray energy
 - Characteristic radiation (change target material Cu, Mo)

Spatial resolution & FOV

— 17.7 μm

Diameter				
— 17.7 μm	— 19.2 μm	— 21.1 μm	— 24.0 μm	— 39.8 μm
Porosity				
0.96	0.96	0.95	0.95	0.92

Voxel size < ¹/₅ feature size

FOV [mm]	Voxel [µm]	File size
100 x 100 x 100	1	2000 TB

Signal-to-noise

18650 battery

8.5 min

18650 battery

Improving signal-to-noise

- Increase the scan time
- Shorten the source-todetector distance
- Bin pixels

Experiment type

CT experiments with batteries

- Battery materials
 - Ex situ Raw & cycled materials
 - In situ Cycled materials
- Battery cells
 - In situ
 - Operando

Polling Question #2

Microsoft Stock

What information can we extract from CT data about batteries?

Li-ion batteries

nm-to-µm scale CT features^{a)}

- Cathode/anode design
- Cathode/anode performance
- Separator design
- Electrolyte distribution
- Battery cell design

Pietsch, P., Wood, V., 2017. Annu. Rev. Mater. Res. 47, 451-479.

Polling Question #3

Microsoft Stock

Battery analysis examples

18650 cell analysis Local curvature [mm⁻¹] 5.74 5.16 4.59 4.02 3.44 2.87 2.29 1.72 1.15 0.57 0.00 Scene coordinate system 3D

Damaged

Deep learning segmentation

Imaging: Mo (17 keV), 10X, 320 nm voxel (3 mm cell)

Imaging: Mo (17 keV), 10X, 320 nm voxel (3 mm cell)

Histogram threshold

2D cross-sections

3D segmented Data

- particle size
- distribution
- porosity
- particle shape
- change over time

Particle size distribution

Imaging: Cu (8 keV), 20X, 320 nm voxel (separator only)

Separator properties:

- Porosity
- Thickness
- Permeability
- Distribution

Imaging: Mo (17 keV), 10X, 660 nm voxel (3 mm cell)

www.acsami.org

Research Article

Visualization and Control of Chemically Induced Crack Formation in All-Solid-State Lithium-Metal Batteries with Sulfide Electrolyte

Misae Otoyama, Motoshi Suyama, Chie Hotehama, Hiroe Kowada, Yoshihiro Takeda, Koichiro Ito, Atsushi Sakuda, Masahiro Tatsumisago, and Akitoshi Hayashi*

Cite This: ACS Appl. Mater. Interfaces 2021, 13, 5000–5007

Otoyama, M., et. Al., 2021. ACS Appl. Mater. Interfaces 13, 5000-5007.

X-ray projection images during the galvanostatic test (without rotating)

Otoyama, M., et. Al., 2021. ACS Appl. Mater. Interfaces 13, 5000-5007.

Imaging: Mo (17 keV), 5X, 2.5 µm voxel

Otoyama, M., et. Al., 2021. ACS Appl. Mater. Interfaces 13, 5000-5007.

We discussed:

- What is X-ray CT?
- What are the considerations when using X-ray CT for battery research?
- What information can we extract from CT data about batteries?
- Battery analysis examples

Questions & Answers

We'll follow up with your questions.

Recording will be available tomorrow.

Register for the next workshop.

Beneath The Surface: X-Ray Analyses of Battery Materials and Structures

A Battery Webinar Series by Rigaku

Non-destructive Elemental Analysis of Batteries Using XRF

October 16, 2024 at 1:00 PM

Register at rigaku.com

THANK YOU

