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Abstract
In recent years, there have been significant improvements in AI technology, especially in neural networks. We describe 
profile-based phase identification using neural networks, which does not require peak search. Using cements and 
excipients as examples, we report that neural networks can be used to identify crystalline phases more accurately even 
when analysis by the conventional method is difficult.

1. Introduction
Phase identification is one of the basic analyses of 

powder X-ray diffraction (powder XRD). Although 
X-ray diffraction software such as SmartLab Studio II(1) 
automates the procedure to list phase candidates from 
XRD profiles, inspection by experts is required to finally 
determine the crystalline phases. To make this analysis 
easier, it is important to have a method to obtain more 
accurate phase candidates.

Conventionally, peak-based methods have been 
widely used for phase identification in powder XRD, 
including the Hanawalt method, which is a manual 
analysis method(2). In peak-based methods, peak search 
is first performed on the XRD profiles to make a list 
of peak positions and intensities (d–I list). This d–I 
list is then compared with the diffraction patterns of 
known materials to obtain phase candidates. However, 
in profiles with many overlapping peaks or broad peaks 

due to poor crystallinity, it is difficult to perform peak 
search accurately and sometimes the correct candidates 
cannot be obtained.

Recently, a phase identification method using neural 
networks has been proposed(3). Neural networks are 
AI models that imitate the network structure of cranial 
nerves. They can be trained by inputting training data 
to solve tasks such as image classification, for example. 
The technology of neural networks has been improving 
dramatically, with many models appearing that can 
perform very complex tasks, such as large language 
models*1. Neural networks can be used to perform 
profile-based phase identification without peak search. 
Therefore, it is expected that more accurate phase 
candidates can be obtained for profiles that are difficult 
to analyze by conventional methods.

In this paper, we describe the method of phase 
identification using neural networks. Using cements 

* XRD Application & Software Development, Product Division, 
Rigaku Corporation.
** X-ray Research Laboratory, Rigaku Corporation.

Fig. 1. Comparison of the procedures of phase identification by the conventional method (search/match) and neural networks.

*1 Large AI models which specialize in language understanding and 
generation such as ChatGPT (invented by OpenAI).
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and pharmaceutical excipients*2 as examples, which 
are typical materials difficult to analyze by conventional 
methods, we report that the use of neural networks 
enabled more accurate analysis.

2. Phase Identification by Neural Networks
In Fig. 1, the procedures of phase identification by 

the conventional search/match method and by neural 
networks are compared. As mentioned above, in search/
match, a peak-based method, phase identification is 
performed by first making a peak list from the XRD 
profile and then matching it with the diffraction pattern 
database. On the other hand, in phase identification by 
neural networks, the measured XRD profile (or a pre-
processed profile, such as one where the background has 
been subtracted) is directly input to a neural network to 
perform phase identification. Therefore, the results by 
neural networks are essentially independent of the peak 
search accuracy.

In this study, we used a vision transformer (ViT)(4) as 
a neural network model for phase identification, which 
is known as a high-performance image recognition 
model. The process flow of phase identification by a 
ViT is shown in Fig. 2. ViTs have a structure called a 
transformer*4 by which an input image is divided into 
multiple patches and the relationships between them 

are evaluated to recognize spatially separated features 
on the image(5). In our case, the input image is a one-
dimensional XRD profile. It is expected that the ViT 
associates discrete features such as peaks to identify the 
crystalline phases.

3. Evaluation method
3.1. Data preparation

We chose cements and pharmaceutical excipients as 
materials to compare phase identification by search/
match and by neural networks. Examples of XRD 
profiles of cements and excipients are shown in Fig. 3. 
It is difficult to identify phases in cements by search/
match because there are many overlapping peaks due 
to the multiple polymorphs with similar diffraction 
patterns in their major components*5. Likewise, phase 
identification by search/match is also difficult for 
excipients because they generally contain micro-crystals 
and amorphous components and thus have broad peaks.

We prepared a small database for each of these two 
materials to perform phase identification for them. 
The cements database contained 72 phase entries, of 
which 28 were major components (C3S: 7 entries, C2S: 
12 entries, C3A: 6 entries, C4AF: 3 entries) and 44 
entries were other minor components contained in usual 
cements. The excipients database consisted of 40 phase 
entries, of which 8 were crystals, 24 were micro-crystals 
and 8 were amorphous phases.

Next, we describe the training data for the neural 
networks. We used simulated profiles generated by the 

Fig. 2. Phase identification by the vision transformer.

Fig. 3. Examples of XRD profiles of cements and excipients.

*4 The transformer technique was originally developed in language 
models and used in current large language models. ViTs have achieved 
great success when applied to image recognition.
*5 Cements generally contain alite (C3S), belite (C2S), aluminate 
(C3A) and ferrite (C4AF) as major components. There are several 
polymorphs and phases with slightly different compositions for these 
components.

*2 Inactive substances used in the formulation of drugs.
*3 Multi-Layer Perceptron. Simple neural networks with several fully 
connected layers.
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fundamental parameter (FP) method*6 in SmartLab 
Studio II as training data. The following strategy 
proposed in the previous study(3) was adopted as a 
method to generate large amounts of data in a short time.
(1)  Simulated single phase profiles of each crystalline 

phase in the databases by the FP method. Here, 
several patterns of profiles were generated by 
varying the phase parameters (lattice constants, 
crystallite size and preferred orientation). This was 
to include differences of profile shapes due to phase 
parameters in the training data.

(2)  Added the simulated single phase profiles together at 
random to generate mixture profiles.

The mixture profiles generated in this way were the 
input to the neural networks. The neural networks output 
the certainty of inclusion of each crystalline phase (as a 
continuous value between 0 and 1) and were optimized 
(trained) to output 1 for the included phases and 0 for 
the not-included phases.

Then, we describe the test data used for the 
evaluation. As common test data for search/match and 
neural networks, 1000 mixture profiles were generated 
for each of cements and excipients by the FP method. 
For cements, all data contained one phase from each 
of the four major components (C3S, C2S, C3A and 
C4AF) and one or two minor phases. The minimum 
weight fraction was 1 wt% for each minor phase. On the 
other hand, for excipients, all data contained a random 
selection of two to eight phases, with a minimum weight 
fraction of 2 wt% for each phase. Crystallite sizes were 
60–140 nm for crystals, 10–20 nm for micro-crystals and 
1–2 nm for amorphous phases.

3.2. Phase identification procedures
In the evaluation, we performed phase identification 

by search/match using the following procedure*7:
(1)  Executed peak search and fit profiles with split 

pseudo-Voigt functions for peaks and a B-spline 
function for background.

(2)  Performed phase identification by matching with the 
database.

Phase identification by neural networks was 
performed in the following procedure:
(1)  Subtracted background by fitting with a polynomial 

function.
(2)  Input the background subtracted profile to the 

trained neural network. The neural network output 
the certainty of inclusion of each phase. If the value 
was greater than or equal to 0.5, it was judged as 
included, otherwise it was judged as not included.

3.3. Indicators
We used three indicators called recall, accuracy and 

F1 values to compare the results by search/match and by 

neural networks. These are defined as follows. Let the 
true positive rate be TP, the false positive rate be FP and 
the false negative rate be FN. Using these, the recall and 
the precision are defined by the following equations.

Recall=TP/(TP +FN) (1)

Precision=TP/(TP +FP) (2)

A higher recall means fewer missed detections of 
the phases, and a higher precision means fewer false 
detections. Using the recall and the precision, the F1 
value is given by the following equation.

Recall Precision×F1 2= × Recall Precision+
   (3)

The closer the F1 value is to 1, the higher both the recall 
and the precision, meaning that the phase identification 
results are more accurate. The neural networks were 
trained three times for each material and the average 
scores are shown in this paper.

4. Results
4.1. Cements

Table 1 shows the results of phase identification 
for the cements test data. The neural network scores 
were significantly higher than the search/match scores, 
indicating that phase identification was performed 
more accurately including polymorphs of the major 
components. The low recall for minor components by 
search/match means that trace components could not be 
detected in many cases.

For cements, in addition to the evaluation using the 
simulation data, we also carried out evaluation using the 
measured profile of the NIST 2686 clinker*8 standard 
sample. This was performed according to the following 
procedure:
(1)  Executed phase identification for the measured data 

of the NIST 2686 sample by search/match and neural 
networks.

(2)  Performed Rietveld analysis using phases selected 
above and compared the weight fractions with the 
NIST certified values.

The result of this evaluation is shown in Table 2. 
Although the same phases were identified for most of 
the components by search/match and neural networks, 
different crystal systems were identified for C3S, one 
of the main components. This caused large differences 
in the quantitative values by Rietveld analysis and the 
phase candidates by neural networks gave closer values 
to the certified values. This implies that the neural 
networks was able to select more appropriate phases and 
was superior in identifying polymorphs.

4.2. Excipients
The results for the excipients test data are shown in 

Table 3. The neural networks also outperformed search/
match on most scores for excipients. The superiority 

*6 The method to simulate diffraction patterns using the convolution 
of profile shape derived from crystallite size and lattice strain, profile 
shape derived from emission profile of incident X-ray and profile 
derived from each type of device.
*7 This is the default analysis procedure in SmartLab Studio II. *8 Main raw material for cements.
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of the neural networks was particularly remarkable for 
micro-crystals. Therefore, neural networks are more 
suitable for phase identification for samples with poor 
crystallinity. On the other hand, for identification of the 
amorphous phases, it is hard to say that the phases were 
identified sufficiently even by neural networks although 
their scores were higher than the search/match scores. It 
is believed that this is because the real background could 
not be separated from the amorphous profiles when 
subtracting background during pre-processing.

As an example of a practical use case, we therefore 
evaluated identification of crystals and micro-crystals, 
excluding amorphous phases which are difficult to 
identify by either method. In other words, amorphous 
phases were excluded from the excipients database and 
this database was used to train the neural networks. 
Amorphous phases were also excluded from the target 
database of search/match. However, the test data still 
contained amorphous components, and we investigated 

whether crystals and micro-crystals could be identified 
from them by search/match and neural networks. The 
procedure of phase identification by neural networks 
was modified as follows to perform this evaluation:
(1)  Executed peak search to detect peaks of crystals and 

micro-crystals. Then, fit peaks and background to 
subtract background including the amorphous halos.

(2)  Input the background subtracted profile to the trained 
neural network to identify phases.

Note that this method uses peak search for background 
subtraction, and therefore the results of phase 
identification by neural networks are also affected 
by peak search. However, the input to the neural 
networks is still a profile rather than a peak list. Thus, 
it is expected that even if overlapping peaks cannot be 
accurately separated, for example, the accuracy of phase 
identification is not as affected so long as the effect on 
fitting background is minor.

Table 4 shows the results of this evaluation. Although 

Table 2. Results of evaluation by the measured data of NIST 2686.

Phase

Neural networks Search/Match Certified values

Crystal systems of 
identified phases

Weight fraction/wt%
Crystal systems of 
identified phases

Weigt fraction/wt% Weight fraction/wt%

C3S Monoclinic 57.5 (0.4) Rhombohedral 44.5 (0.6) 58.6±4.0

C2S Monoclinic 24.6 (0.4) Monoclinic 35.1 (0.6) 23.3±2.8

C3A Cubic 0.3 (0.3) Cubic 0.2 (0.7) 2.3±2.1

C4AF Orthorhombic 13.1 (0.3) Orthorhombic 14.0 (0.4) 14.1±1.4

Periclase — 4.41 (0.12) — 6.10 (0.19) 3.3±1.9

Estimated standard deviations in brackets (1σ).

Table 3. Phase identification results for the excipients test data.

Recall Precision F1

All phases
Neural networks 0.732 0.823 0.775

Search/Match 0.501 0.848 0.630

Crystals
Neural networks 0.945 0.943 0.944

Search/Match 0.834 0.962 0.894

Micro-crystals
Neural networks 0.759 0.918 0.831

Search/Match 0.571 0.830 0.677

Amorphous
Neural networks 0.434 0.433 0.433

Search/Match 0.043 0.338 0.076

Table 1. Phase identification results for the cements test data.

Recall Precision F1

All phases
Neural networks 0.752 0.841 0.794

Search/Match 0.448 0.621 0.520

Major phases
Neural networks 0.825 0.822 0.824

Search/Match 0.516 0.633 0.568

Minor phases
Neural networks 0.591 0.944 0.727

Search/Match 0.287 0.583 0.384

© 2025 Rigaku Corporation.　



Rigaku Journal, 41(2), 2025	 10

AI Analysis Basic Course First Installment: Neural network application to phase identification in powder X-ray diffraction

search/match slightly outperformed the neural networks 
in precision, the neural networks gave significantly 
higher recall values than search/match. The difference 
in recall for micro-crystals was particularly remarkable, 
indicating that the neural network had fewer missed 
detections of micro-crystals. Therefore, the combined 
use of peak search to subtract non-monotonic 
background is also practical for the detection of (micro-)
crystals.

5. Summary
We have compared phase identification by the 

conventional search/match method and by neural 
networks. Search/match is a peak-based method 
and therefore sometimes does not identify the 
correct crystalline phases for profiles where accurate 
peak search is difficult. On the other hand, phase 
identification by neural networks is profile-based and 
basically independent of the accuracy of peak search. 
In this paper, we have evaluated the results of phase 
identification by these two methods for cements and 

pharmaceutical excipients. These materials are typical 
examples of those which are difficult to analyze by 
search/match since the cements profiles have many 
overlapping peaks and excipients profiles have broad 
peaks due to poor crystallinity. We have shown that the 
use of neural networks to identify phases gave more 
accurate results for these materials.
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Table 4. Phase identification results when amorphous phases are excluded.

Recall Precision F1

Crystals
Neural networks 0.959 0.910 0.934

Search/Match 0.838 0.941 0.887

Micro-crystals
Neural networks 0.825 0.762 0.792

Search/Match 0.572 0.804 0.668
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