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Basics of X-ray CT reconstruction
Principles and applications of iterative reconstruction

Takumi Ohta*

Abstract
This article describes the principles and applications of iterative reconstruction in X-ray computed tomography. We 

use several real examples to show how iterative reconstruction can produce higher-quality reconstructed images than 
the conventional reconstruction method.

1. Introduction
X-ray CT (computed tomography) is a method to 

investigate the internal structure of a sample using 
X-rays. In principle, CT uses a computer to reconstruct 
and visualize three-dimensional internal structures of 
a sample from a collection of its two-dimensional 
projections. The reconstructed images can then be 
subjected to various types of analysis. Regardless of the 
method and purpose of the analysis, it is important to 
obtain high-quality images to ensure the best possible 
results.

In CT, images are recovered from a set of projections 
through a process called tomographic reconstruction. 
This process is an essential step in CT image processing, 
and it affects the quality of the reconstructed data in a 
major way. In certain cases, conventional reconstruction 
methods are too unreliable and produce images unfit for 
further analysis. Under these circumstances, iterative 
reconstruction (IR) methods may perform much better.

This article describes the principles and applications 
of IR methods. Section 2 describes the procedure of 
obtaining projection images and notes some important 
precautions for CT measurements. Principles of 
conventional reconstruction algorithms are shown in 
section 3. The principles and features of the IR method 
are described in section 4. Finally, section 5 showcases 
situations where IR works well while the conventional 
reconstruction method struggles.

2. Method of CT Measurement
The main components of a CT apparatus are an X-ray 

source, a detector, and a sample stage. Depending on the 
apparatus, the X-ray source and the detector may rotate 
around a fixed sample stage, or the sample stage may 
rotate while the X-ray source and the detector are fixed. 
Since both setups use the same reconstruction methods, 
we assume the former configuration in the following 
explanation.

X-rays generated in the X-ray source pass through 
the sample, where they are attenuated, and they are then 

detected by the detector (Fig. 1). In a CT measurement, 
this is repeated for a range of angles by rotating the 
X-ray source and the detector. The X-ray shadow of the 
sample, which is also called a projection image, contains 
partial information about the distribution f of the linear 
attenuation coefficient of the sample. Projection data can 
be rearranged and viewed as a sinogram, where one axis 
represents the projection angle and the others represent 
the positions along a horizontal row and a vertical 
column of the projection images. The attenuation of 
X-rays by a material is described by the Beer–Lambert 
law (Equation 1):

I=I0 exp(－∫fdl), （1）

where I is the detected intensity of the X-ray beam, 
I0 is the beam intensity without attenuation, and l is 
the X-ray path. The Beer–Lambert law describes the 
exponential attenuation of the beam in a material based 
on its linear attenuation coefficient. The intensity I and I0 
are functions of sinogram coordinate s=(u, v, θ), where 
θ is the projection angle, and u and v are the coordinates 
of the detector. The distribution of the linear attenuation 
coefficient is a function of the sample coordinate 
r=(x, y, z). Note that the coordinates may be omitted in 
the following text for the sake of brevity.

Here we must note that when there is a difference 
between measurement conditions and the conditions 

*  XRD Application & Software Development, X-ray Instrument 
Division, Rigaku Corporation. Fig. 1. Acquisition of projection images.
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assumed during reconstruction, the reconstructed image 
will contain false structures—artifacts—in addition to 
legitimate structures of the sample. For example, if the 
geometry of the CT device is misaligned and different 
from the geometry assumed by the reconstruction 
algorithm, the reconstructed image may be blurred. 
Although these differences can be corrected as a pre-
processing step before reconstruction, it is often faster 
and more reliable to ensure there is no misalignment 
before conducting a CT measurement.

3. Principle of Conventional Reconstruction
Tomographic reconstruction determines the three-

dimensional distribution f of the linear attenuation 
coefficient from a set of two-dimensional projection 
images measured at a range of angles (Fig. 2). To see 
this, let us apply a logarithmic transform to Equation 1 
as follows:

0: log .= =
 

∫ 
 

I
f dl

I
g   (2)

The result g represents the absorption of X-rays, and 
Equation 2 linearizes the exponential character of the 
intensity values in raw projection images. Since the right 
side is a function of f, we can write it more concisely as

g =Af. (3)

The operator A transforms the function f into 
the projection images g, and is called the Radon 
transform(1). From this point of view, reconstruction 
is simply the operator B that transforms the projection 
images g to reconstructed image f (inverse Radon 
transform):

f=Bg. (4)

In the case of the parallel beam method, the operator 
B has an exact analytic form, whose implementation 
is called the FBP (Filtered Back-Projection). A more 
detailed description will be left to the literature (2), but 
the basic functionality of FBP is as follows: projection 
images are convolved with (in real space) or multiplied 
by (in frequency space) a filter such as the Ram-
Lak filter and then projected backward (the direction 
of projection is reversed). The Ram-Lak and similar 
filters emphasize high-frequency components (details) 
in the projection data and enable us to obtain sharp 
reconstructed images.

The extension of FBP to a three-dimensional 
cone-beam geometry is called the FDK (Feldkamp, 
Davis, Kress) method(3). Although it is not an exact 
reconstruction algorithm, it is widely used because of its 
speed and ease of implementation. FBP-type methods 
were used for a long time because of their analytical 
exactness and low cost of calculation. However, they 
are highly susceptible to noise and non-standard or 
imperfect scan conditions, which can easily lead to the 
formation of severe artifacts in the reconstructed images.

For example, if FBP reconstruction is performed 
with an insufficient number of projections, radial streak 
artifacts will appear around high-contrast structures. 
This, along with the sensitivity of the method to 
noise, makes FBP unsuitable for fast measurements(4). 
Furthermore, when the sample extends past the 
measurement field in the direction perpendicular to 
the rotation axis, low-frequency noise appears in the 
reconstructed image and a bright ring, also called a 
truncation artifact, appears around the edge portion 
of the reconstructed image. These artifacts reduce 
the accuracy of the analysis and need to be removed. 
Additionally, FBP-type methods cannot be used for 
measurements with unconventional scan geometries(5).

In some cases, depending on the sample, it may not 
be possible to adjust the measurement conditions to suit 
the conventional reconstruction method. For example, 
when the sample is susceptible to deformation or when 
it is necessary to reduce the radiation dose, measurement 
time must be shortened. Further, when the measurement 
field of view must be reduced to increase resolution, 
it is inevitable that the sample protrudes from the 
measurement field of view. In such cases, reconstruction 
using the IR method can be applied to better deal with 
the imperfect measurement conditions.

4. Principle of IR
The IR method iteratively updates a reconstruction 

image until the projections of the image match the 
measured projections(6). The merit of this method is that 
it produces high-quality images even in cases where 
analytical reconstruction fails. Additionally, we can 
incorporate prior information about the sample into the 
reconstruction process, further increasing the quality 
of the final image. However, the main disadvantage of 
IR is that it takes a long time to calculate and requires 
a high-performance computer. For a long time, this has 
prevented IR methods from being widely adopted in 
practice.

The amount of time and hardware resources needed 
by IR methods has been greatly reduced in recent years 
due to developments in computer technology and the 
algorithms utilized in these methods. In this article, 
we explain the principles of the IR method using the 
proximal gradient method, and we introduce techniques 
for obtaining high-quality reconstruction images at high 
speed.

We reformulate the above discussion to better 
understand the operations performed in the IR method. Fig. 2. CT measurement and reconstruction.
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Equation 3 describes the relationship between voxels 
of the reconstruction image and pixels of the projection 
images, and can be rewritten as follows:

g(s)=∑r A(s, r) f (r). (5)

The matrix A is called the system matrix or coefficient 
matrix, whose matrix element A(s, r) represents the ratio 
of voxel at r projected onto position s in the sinogram. 
By solving this matrix equation, we can obtain the 
reconstruction image.

In IR, we do not directly solve Equation 5. Instead, 
we find a solution by minimizing the evaluation function 
J, which consists of the sum of squares of differences 
between the left and right sides of the equation.

( ) 21
=

2
J f Af－g   (6)

In this article, the evaluation function is minimized 
using the proximal gradient method by the gradient 
descent method and regularization. First, the gradient 
descent method is explained.

In the gradient descent method, we calculate the 
gradient (differential) of the evaluation function with 
respect to the reconstruction image and update the image 
in the direction of the gradient’s steepest descent (Fig. 3).

f (k+1)= f (k)−α∇J( f (k))= f (k)−αAT (Af (k)− g) (7)

The parameter α represents the degree to which the 
image is changed in the gradient direction. By repeating 
this update, we converge to a reconstructed image that 
minimizes the evaluation function.

Equation 7 can be decomposed into the following four 
steps:
1) Project the reconstructed image from the k-th 

iteration step using A.
2) Calculate the difference image between these 

projections and the measured projection images.
3) Back-project the difference image with AT (the 

transpose of A).
4) Add the back-projected difference image (multiplied 

with α) to f (k) to get the updated reconstructed image 
f (k+1).

AT acts as the back-projection operator because it trans forms 
sinogram values into voxel values. That is, in IR, we can 
obtain the reconstructed image by repeating the projection 
and back-projection operations. The initial re constructed 
image for IR methods is often simply a ho mo geneous 
image of zeroes, but it can also be, for example, the 
output of a conventional reconstruction method.

In the IR method, the quality of the reconstructed 
images can be improved by including prior information 
about the images in the evaluation function. A common 
example of prior information is the sparseness of 
the image. Sparseness means that there are many 
pixels with a value of 0, which means there is little 
essential information contained within them. This occurs 
when the sample occupies only a small part of the 
measurement field of view, while the rest is occupied 
by air. L1 regularization is one method to enforce 
sparseness at the time of reconstruction by adding the 
L1 norm of the pixel values to the evaluation function. 
When including regularization, the IR method can be 
expressed as:

Fig. 3. One-dimensional illustration of optimization using 
the gradient descent method.

Fig. 4. Comparison of images reconstructed using different reconstruction methods.
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where the R( f ) is the regularization term and prox is the 
proximal operator. In the case of L1 norm mentioned 
above, this proximal operator is equivalent to a soft-
thresholding operator(7).

It is not always necessary to use the sparseness of the 
original image itself, and the sparseness of a conversion 
of this image may be used. For example, when a sample 
contains many homogeneous regions, its differential 
image will have many zero parts. Therefore, it is 
possible to perform a transform that differentiates the 
reconstruction image and reconstructs it by adding its 
L1 norm to the evaluation function. This is called the 
TV (Total Variation) regularization(8), and it allows us to 
obtain a reconstruction image with reduced noise while 
preserving sharp edges. However, note that increasing 
the degree of regularization (increasing the parameter 
indicating the strength of the regularization term) can 
lead to loss of details of the sample.

Let us compare reconstructed images obtained by 
the FDK method and the IR method. Figure 4 shows 
a bamboo skewer sample measured with a Rigaku 
nano3DX, reconstructed using FDK (left), the IR 
method (center), and the TV regularized IR method 
(right). We can see that the reconstruction image of the 
FDK method is the noisiest of the three, while the noise 
is reduced by using the IR method. The IR method with 
TV regularization has the least noise, and the voids and 
tissues can be clearly distinguished.

In IR methods, as the number of iterations is 
increased, the reconstruction image approaches 
convergence and becomes clearer, while the calculation 
time increases proportionally. Convergence may require 

a large number of iterations in some cases, so methods 
have been devised to accelerate this process. Here, we 
introduce the OS (Ordered Subset) method(9) and the 
Nesterov acceleration method(7), (10).

In the OS method, projection images are divided 
into several subsets, and projection or back-projection 
is performed for each subset separately and in order. 
By doing so, the number of image updates per iteration 
increases and the image converges faster. However, 
increasing the number of subsets too much will lead to 
increased computational overhead and the possibility of 
artifacts occurring due to each image update using only 
a small number of projections.

Next, in the Nesterov acceleration method, image 
updates use not only the image from the previous step, 
but also the image from the second-to-last step. This 
is a method that can be used not only in IR using the 
gradient descent method but also in conjunction with 
the proximal operator. Using these acceleration methods 
on the examples shown in this article, we can obtain 
reconstructed images in 10 iterations with the initial 
image as a uniform image.

5. Applications of IR Method
This section showcases several applications of the 

IR method. We will pay special attention to how the 
image quality is improved by the IR method when the 
measurement is performed under conditions that cause 
artifacts in conventional reconstruction. Below, we 
use three types of samples for comparison: a bamboo 
skewer, bread, and an electronic component.

First, we compare the degree of image quality 
deterioration when the number of projection images is 
reduced for the bamboo skewer sample. For comparison, 
we use the same measurement data and restrict the 
number of projections used at the time of reconstruction. 

Fig. 5. Comparison of images reconstructed using different numbers of projections. The numbers in the brackets represent the number of 
projection images used during reconstruction.
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The upper row of Fig. 5 shows images reconstructed by  
the FDK method, while the lower row contains the results 
of the IR method. We can see that noise increases as the 
number of projections used for reconstruction decreases. 
Comparing reconstructed images for the same numbers 
of projection images, we can see that the IR method 
produces images with less noise than the FDK method.

Next, we compare image quality when the 
measurement time is shortened for a fast measurement 
of the bread sample. The measurement was performed 
using a Rigaku CT Lab HX. The measurement time 
needs to be kept short because the sample tends to 
deform over time. This is shown in the left part of 
Fig. 6, where an image reconstructed from a long 
(68-minute) measurement contains blurred edges and 
artifacts due to factors such as evaporation of water in 
the sample. Shortening the measurement time to reduce 
this effect in turn increases the noise contained in the 
measured data. In such a case, reconstruction using the 
IR method is effective. The center and right parts of 
Fig. 6 show images of a fast measurement (4 minutes) 
reconstructed by the FDK method and the IR method, 
respectively. It can be seen that the IR method produced 
images with much less noise than the FDK method. 

This experiment demonstrates that the IR method can be 
used to drastically shorten measurement times to avoid 
sample motion without sacrificing image quality. Shorter 
measurement times can also be beneficial for a number 
of other reasons, such as decreasing the radiation dose 
absorbed by the sample. For instance, in the medical 
field, short-time or low-power measurements are carried 
out in order to reduce the radiation dose absorbed by the 
human or animal patient.

Lastly, we compare the image quality in reconstructions 
of the capacitor sample, which contains high-contrast 
components. The measurement was performed with 
Rigaku CT Lab HX again. Figure 7 shows images 
reconstructed by the FDK method (left), with streak-like 
artifacts near high-contrast parts of the sample, and the 
IR method (right), which significantly reduces this type 
of streak artifacts.

6. Conclusion
In this article, we have familiarized ourselves 

with the principles and applications of the iterative 
reconstruction (IR) method. Through multiple applied 
examples, we have seen that this method has drastically 
increased image quality compared to the conventional 

Fig. 6. Comparison of images reconstructed from data with different measurement times.

Fig. 7. Comparison of the reconstructed images of a capacitor sample with high-contrast structures.
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reconstruction method in various scenarios. For 
a sample whose shape tends to change over time, 
long-duration measurements are not feasible, and fast 
measurements become necessary. Fast or low-power 
measurements may also be used to reduce radiation 
dose. However, noise increases drastically in such 
measurements, complicating any diagnosis performed 
using the reconstructed images. In such cases, the IR 
method can prove to be very effective by allowing us to 
decrease the measurement time or radiation dose without 
a significant loss in image quality.

This time, we have explored only some of the 
more basic applications of IR, and we have seen 
how this method can provide high-quality images 
suitable for further processing, increasing the accuracy 
of various analyses. Additionally, various advanced 
correction methods, such as motion corrections and 
beam hardening corrections, can be performed within 
the framework of the IR method. We will focus on such 
advanced uses of the IR method in a future article.
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