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Atomic-scale structural analysis by total scattering profiles

Masatsugu Yoshimoto*

Abstract 
In the past, total scattering data was used to obtain the pair distribution function (PDF) G(r). However, it has become 
clear that it is also possible to calculate characteristic values related to the physical properties of materials from the 
total scattering data. In this paper, we introduce two applications using total scattering data. The first evaluates the 
atomic density of materials using total scattering data. The atomic density of SiO2 glass obtained by applying the 
proposed method is consistent within 5% of the literature value. The other is a new application of the Reverse Monte-
Carlo (RMC) method for non-crystalline materials. It does not require any additional parameters to calculate diffraction 
peaks. The proposed method is used to identify specific features of the MnO6 octahedra of the spinel lithium manganese 
oxide (LiMn2O4) corresponding to each Mn valence.

1. Introduction
For a long time, local structure analysis—the 

so-called the pair distribution function PDF method—
has been widely used to understand local structure of 
non-crystalline materials (e.g., glasses and liquids). 
Since V. Petkov et al. reported the local structure 
of Ga(1–x)InxAs(1), it has also been used to analyze 
local structure in crystalline materials. After their 
work, PDF analysis of crystalline materials has been 
widely used in many material sciences fields (e.g., 
batteries(2), (3), catalysts(4), and ferroelectrics material(5)) 
for the following reasons: First, it is good to combine 
Rietveld analysis, which is widely used for crystal 
structure analysis, with the crystalline PDF analysis, 
which requires crystal structure information. Second, 
a laboratory system such as the SmartLab equipped 
with a high-energy target (Ag, Mo) can measure the 
total scattering intensity over a wide Q range. Detailed 
information on a laboratory system for total scattering 
measurements was included in our previous paper (6).

The PDF G(r) is directly obtained from the Fourier 
transform of the experimental structure factor S(Q). 
The information obtained from G(r) is as follows: 
peak positions indicate the average distances between 
atoms, the peak widths note the distribution of neighbor 
atoms (crystallinity), and the peak areas indicate the 
coordination numbers. Coordination number calculation 
from G(r) requires an accurate atomic number density 
for the material. However, it is sometimes difficult to 
determine this property if the material is porous and/
or exists in a fine powder state that contains defects or 
voids.

In this article, we introduce two approaches using 
total scattering data. One is to evaluate the atomic 
density of materials from the total scattering data and 
the atomic composition of a material. The other is a 
new application of the Reverse Monte-Carlo (RMC) 

method for non-crystalline materials without using any 
additional parameters to calculate Bragg peak profiles.

2. Determining the Density of a Material from 
Total Scattering Data

2.1 Introduction
The density of a material is a basic physical property 

calculated from volume and weight. In the case of 
a perfect crystal, the density can be calculated from 
the atomic arrangement and volume of the unit cell. 
For example, the density of silicon (ρ0＝0.049936 
atoms·Å－3＝2.32 g/cm3) calculated using the lattice 
parameter from NIST 640f (space group: Fd3̅m, 
a＝5.431144 Å)(7) with 8 Si atoms in the unit cell is 
consistent with the bulk density. However, the material 
used in the actual model is a powder that contains 
various defects and pores between micro-scale and 
meso-scale; defects in the lattice, interparticle voids, 
pores in the structure, and roughness of the interface. 
The volume can only be evaluated by measuring the 
surface and quantifying pores that are accessible by 
the probe molecule; closed pores and defects in the 
atomic-scale structure cannot be measured. Therefore, to 
evaluate the physical property of a material, a method of 
estimating the atomic density independent of the sample 
state is needed.

It is well known that the density of a sample is 
closely related to S(Q) and the total scattering intensity 
with absolute scale. Yevick G. J. and Percus J. K. 
reported that S(Q) and G(r) were described by only 
two parameters: the nearest neighbor distance and the 
packing fraction in the monatomic hard sphere case(8). 
These results indicate that S(Q) and G(r) contain 
information about those fundamental parameters in 
non-crystalline states. Furthermore, Krogh-Moe J. and 
Norman N. reported that an integral over the total 
scattering intensity with absolute scale is related to the 
density of a sample material(9), (10); this is well known as 
the Krogh-Moe–Norman method. However, it cannot be * X-ray Research Laboratory, Rigaku Corporation.
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applied to the calculation of the microscopic density of a 
sample because the normalization constant is determined 
by the volume and mass of the irradiated area; the latter 
is affected by microscopic pores.

It is also known that the density of a sample can be 
calculated from the slope of G(r) in the region less than 
the nearest-neighbor distance(11), (12). The obtained G(r) 
is, however, often affected by non-physical modulation 
of the experimentally observed S(Q) and does not 
show a linear slope in the less-than-nearest-neighbor 
region; therefore, the estimated density has a large 
uncertainty (12). To overcome this problem, we have 
developed a Q-space iteration formula to remove such 
unphysical modulation of the experimentally observed 
S(Q) without introducing any ambiguous parameters. 
Then, the corrected G(r) satisfies the physical condition 
in the short-distance region, and we can reliably estimate 
the microscopic density.

2.2 Outline of the determination density
The observed structure factor Sobs(Q) can be obtained 

from the coherent scattering intensity Icoh(Q) as shown 
in Eq. (1):
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where Q＝4π sin(2θ/2) /λ, 2θ is the scattering angle and 
λ is the wavelength of the X-rays.〈 f 2〉 and 〈 f〉 are the 
mean squared average atomic scattering factor and the 
average atomic scattering factor, respectively, as defined 
in Eqs. (2.1) and (2.2):
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where ci and fi are the atomic concentration and atomic 
form factor for the ith types of atoms, respectively. 
The observed PDF, Gobs(r), can be calculated from the 
Fourier transform of Sobs(Q) as shown in Eq. (3):
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According to its physical meaning, G(r) can be written 
in terms of the local atomic density ρ(r) and the average 
density ρ0, as:

Gobs (r)＝4πr(ρ(r)－ρ0) (4)

In the region less than the interatomic distance, rmin, 
there must be no atoms; therefore, ρ(r)＝0 where 
r≤ rmin. Then, the ideal GI(r) should satisfy the following 
equation in this region(11), (12)，

GI (r≤ rmin)＝－4πrρ0. (5)

In general, the observed structure factor Sobs(Q) may 

include non-physical modulations over the wide Q range 
due to experimental errors, and thus the experimental 
Gobs(r) does not satisfy the condition in Eq. (5). In this 
case, the structure factor can be corrected by assuming 
it should be consistent with Eq. (5) and obtained by 
replacing the observed Gobs(r) with the ideal GI(r) in the 
range of r≤ rmin,
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When we define the new two functions, α(Q) and β(Q), 
as:
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Eq. (6) can be written as follows:

Scor (Q)＝Sobs (Q)－β(Q)＋ρ0 α(Q) (8)

In Eq. (8), the number density ρ0 is treated as a scale 
factor that minimizes the residual sum of squares 
(RSS) between ρ0 α(Q) and β(Q). Then, ρ0 is derived as 
follows:
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This procedure is applied repeatedly j times, as shown in 
Fig. 1, until the residual Rj (%), defined as:
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becomes close to zero. Finally, we can estimate the 
average density ρ0 of a material.

2.3 Experimental section
To verify our method for determining the density 

ρ0, we performed a total scattering measurement for 
SiO2 glass using a SmartLab (Rigaku Corp.) equipped 
with a high-speed 1D detector. The incident X-rays 
were monochromatized by a focusing multilayer mirror, 
and the obtained X-ray energy was EAg Kα＝22.11 keV. 
The total scattering measurement was done with the 
scattering angle 2θ and its corresponding scattering 
vector Q ranging from 2.4° and 0.47 Å－1 to 157° 
and 21.958 Å－1, respectively. A rod-shaped SiO2 glass, 
whose diameter is 0.5 mm and length 80 mm, was 
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purchased from Nakahara Opto-Electric Lab., Inc. The 
coherent scattering intensity Icoh(Q) of SiO2 glass was 
obtained using the established correction procedures(6).

2.4 Results and discussion
The collected scattering intensity Icoh(Q) oscillates 

symmetrically around the mean squared average of 〈 f 2〉  
over the entire Q range and the PDF analysis could be 
performed correctly as shown in Fig. 2.

Figure 3a shows Sobs(Q), Scor(Q), and the residual 
curve between them. The residual curve does not contain 
structural information. It is mainly caused by two 

factors: incoherent Compton scattering and background 
scattering from the sample container(12). Figure 3b shows 
Gobs(r), Gcor(r), and their difference. The corrected 
Gcor(r) satisfies the condition Eq. (5) after eliminating 
the non-physical modulation from Gobs(r) in the range of 
r＜1.3 Å, and a reliable average density ρ0 is obtained by 
applying Eq. (9).

Figure 4a shows the iterated procedure of ρ0, which 
converged to ρ0＝0.06311 atoms·Å－3 as the number of 
iterations increased. The R-value gradually decreases for 
each iteration step as shown in Fig. 4b. The determined 
SiO2 glass number density (ρ0＝0.06311 atoms·Å－3) 
coincides with the reported bulk density (ρbulk＝ 
0.06613 atoms·Å－3) within ±5%(13), (14).

We also validated the Q range dependency of the 
determined value. The determined density is ρ0＝ 
0.06969 atoms·Å－3 calculated from the total 
scattering intensity measured by Mo Kα (λ＝0.7107 Å, 
EMo Kα＝17.45 keV) and is in good agreement with 
that using Ag Kα (λ＝0.5608 Å, EAg Kα＝22.11 keV). 

Fig. 1. The scheme for the determination of density from 
total scattering data.

Fig. 2.  The coherent scattering intensity (red solid line) and 
the atomic scattering factor (blue broken line) of SiO2 
glass.

Fig. 3.  (a) Comparison of S(Q) before (gray), after correction 
(red) and the residual curve between them (blue). (b) 
The corresponding G(r).



Rigaku Journal, 39(1), 2023	 18

Atomic-scale structural analysis by total scattering profiles

The proposed method can estimate the appropriate 
density using total scattering intensity measured by 
high-energy X-rays such as Ag Kα and Mo Kα, but it is 
not suitable for calculating the density using relatively 
long wavelength X-rays like Cu Kα (λ＝1.5423 Å, 
ECu Kα＝8.04 keV). This is because Gobs(r) must be 
convoluted with the termination error arising from the 
measurable maximum Q value, Qmax. Moreover, the 
minimum peak width of Gobs(r) is determined by the 
termination error and broadens with decreasing Qmax 
value. The determined density contains a large error 
because the effect of termination error cannot be ignored 
when the X-ray wavelength is longer than that of Ag Kα 
and Mo Kα radiation.

2.5 Conclusion
The proposed method only requires the nearest-

neighbor distance, which can be estimated from the 
coherent scattering intensity of a material as shown in 
Fig. 2, without any unphysical assumptions. In other 
words, only the reliable total scattering intensity and 
the atomic composition ratio of a material are required. 
The proposed method can be widely applied to any 
crystalline or amorphous material containing defects and 
pores in its structure. Detailed information about density 
determination and further applications can be found in 
Ref. 15.

3. A New Approach to the Local Structure in a 
Crystalline Material

3.1 Introduction
The properties of a novel material are related to not 

only the average structure but also the disordered local 

structure; for example, the particle size dependence of 
permittivity of BaTiO3

(5), (16), (17) and Li-ion diffusion in 
solid electrolytes(18)–(20). It is also well known that the 
materials for Li-ion batteries undergo structural changes 
during charge and discharge reactions. Several studies 
have demonstrated that the graphite structure changes upon 
intercalation of Li atom using X-ray diffraction(21)–(23) and 
Raman spectroscopy(24), and that the lattice parameter 
for the cathode material changes during Li insertion and 
extraction according to X-ray diffraction profiles(25).

The spinel LiMn2O4 (LMO) is one of the most famous 
cathode materials because of its thermal stability, 
non-toxicity, and low production cost(26). LMO has 
a structural phase transition(27), (28) with a hysteresis 
between the heating and cooling processes(29), (30). In the 
high-temperature phase, LMO forms a cubic structure 
with space group Fd3̅m. There is one unique MnO6 
octahedra in cubic spinel LMO. In the low-temperature 
phase, the spinel LMO forms an orthorhombic structure 
that is a 3a×3a×1a superstructure based on the cubic 
spinel LMO, with space group Fddd. In the low-
temperature phase, the MnO6 octahedra are distorted 
and separated into five types. It has been suggested that 
some of the MnO6 octahedra form Mn3＋O6 and are 
distorted as a result of the Jahn-Teller effect(27), (30), (31).

The Reverse Monte Carlo RMC method developed 
by R. L. Mcgreey and L. Putzai(32) directly searches the 
optimized coordination of individual atoms consistent 
with the experimental total scattering data, making it 
suitable for the study of disordered local structure in 
crystalline materials. For crystalline materials, local 
structure estimation using Gobs(r) and Sobs(Q) each face 
different technical problems. In the case of Gobs(r), 
the direct comparison of Gobs(r) and GRMC(r) may 
suffer from artifacts in the estimated structure because 
structural deformations in a crystalline material can 
be small compared with the termination error arising 
from the measurable maximum Q value Qmax. To solve 
this problem, it is proposed to use G′RMC(r), which 
is GRMC(r) convoluted with the termination error, to 
estimate the local structure(33). In the case of Sobs(Q), the 
dimension of the calculation box (simulation box) is too 
small to calculate the diffraction peaks correctly. The 
first attempt at a local structure study for a crystalline 
material comparing the results of the RMC method with 
the experimental structure factor S(Q) was reported 
by V. M. Nield et al.(34) Their method is an interesting 
approach but has a problem in that the original structure 
factor S(Q) has been changed by convolution with the 
simulation box size effect. Therefore, the modified 
structure factor includes an artificial fringe due to the 
termination error caused by ending the calculation 
at a finite distance. The amplitude of the fringe is 
comparable to that from the real structure of materials, 
making it difficult to judge the validity of the simulated 
results.

At the present time, we have found two major 
approaches for modeling the local structure in a 
crystalline material including the calculation of 

Fig. 4. (a) The atomic number density after each iteration. 
(b) The corresponding R-factor.
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diffraction peaks. One is the RMCPOW program 
developed by A. Mellergard and R.L. McGreevy(35), (36), 
which directly calculates the diffraction intensities from 
an average structure and the diffuse intensity from a 
disordered local structure using the atomic arrangement 
derived from RMC calculations. RMCPOW, however, 
has some limitations: there is a high calculation cost 
because it requires a large simulation box, and it 
requires the Q-resolution function of the experimental 
instrument to calculate sharp diffraction peak profiles. 
The other program is RMCProfile, developed by M. 
G. Tucker et al. It also separately calculates scattering 
intensity coming from the local structure and periodic 
crystalline structure(37), (38). The former is calculated 
from the radial distribution functions obtained 
from the RMC and the latter is calculated using the 
Bragg peak profile function. These two approaches 
require additional parameters to simulate diffraction 
peak profiles to obtain reliable fitting between the 
model structure and the observed experimental data. 
Therefore, if we use these two methods, the diffraction 
peak calculations would be affected by ambiguous 
parameters. To avoid the need for such additional 
parameters and to simplify the RMC procedure, we have 
proposed a method to reproduce the experimental total 
scattering pattern based on the simulated local structure 
without introducing any ambiguous parameters.

In this article, we explain the procedure of the 
proposed RMC method and then demonstrate the 
advantages of the proposed method using crystalline Ni 
data and the structural model. Next, we discuss the local 
structure of spinel LMO.

3.2 Outline of the estimation of the local 
structure of crystalline materials

It is important to note that, in this article, “local 
structure” means the correlation calculated from 
the atomic arrangements put in the simulation box 
and “periodic structure” means the long-distance 
correlations corresponding to the periodic crystalline 
structure outside the simulation box.

The observed pair distribution function Gobs(r) is 
directly obtained from the Fourier transform of the 
observed structure factor (F(Q)＝S(Q)－1) as follows:
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where ρ0 is the average number density of a material, 
g(r) is the pair distribution function, and Q is the 
scattering vector. The task of the RMC approach is to 
reproduce a three-dimensional local structure consistent 
with the observed Sobs(Q) satisfying Eq. (11). We assume 
F(Q) can be separated into two terms as follows:
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where FL(Q) is the local structure term, FP(Q) is the 
long-range periodic structure term and rmax is the 
maximum distance of the RMC calculation.

Generally, we can obtain only FL(Q) because the 
RMC simulation must be performed with a realistic 
finite box size. Therefore, unphysical termination fringes 
were noticed. To avoid such unphysical fringes, we 
have added a long-range periodic part FP(Q), which 
is calculated from the experimental pair distribution 
function:
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Then, we can obtain the following calculated structure 
factor:

( ) ( ) ( )L P
RMC RMC obs .= +F Q F Q F Q    (14)

FL
RMC (Q) is obtained from the Fourier transform of the 

pair distribution function gRMC (r), which is calculated 
from the atomic configuration in the calculation box:
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The calculated structure factor Fcal (Q) obtained by Eqs. 
(14) and (15) is optimized via the RMC procedure to 
satisfy

FRMC (Q)＝Fobs(Q). (16)

The calculation error is estimated as:
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RMC trials are performed to decrease Rp by changing 
the atomic configuration in the simulation box until Rp 
becomes almost constant.

Figure 5 shows that the local structure term FL
obs (Q) 

and the periodic structure term FP
obs (Q) are separated 

from the observed structure factor Fobs (Q), which is 
obtained from a crystalline Ni powder and is applied to 
Eq. (12). In the low-Q region (until rmax), both FL

obs (Q) 
and FP

obs (Q) contain a fringe caused by integration, and 
the fringes of FL

obs(Q) and FP
obs(Q) are in antiphase. The 

outline of the proposed RMC for a crystalline material 
was explained with F(Q), but the actual structure 
is evaluated by using the structure factor S(Q) (＝ 
F(Q)＋1).
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The Ni local structure is estimated using the proposed 
RMC starting from the initial atomic arrangement 
of 10×10×10 Ni unit cells (space group: Fd3̅m, 

lattice parameter: a＝3.52503 Å). Figure 6 shows the 
structure factor and the structural model after RMC 
calculation. The estimated structural model is visualized 
with the computer program VESTA(39). The estimated 
local structural model of crystalline Ni is consistent 
with the Sobs(Q) without introducing any ambiguous 
parameters as indicated by the low R-factor value, 
Rp＝2.10%. Figure 7 shows the histogram of the atomic 
displacements calculated from the changes of atomic 
arrangements before and after RMC calculations. The 
root mean square (RMS) of the displacement distance 
is σ＝0.0920 Å, which is consistent with the atomic 
displacement parameter σ＝0.0756 Å obtained from the 
Rietveld analysis result. The local structure in crystalline 
Ni is represented by the displacement of atoms from 
their lattice points at a finite temperature. This indicates 
that the proposed RMC method can estimate the local 
structure in a crystalline material.

3.3 Experimental section
3.3.1 Total scattering measurement

The spinel LMO supplied by Toshima Manufacturing 
Co., Ltd. was sealed in a glass capillary with a diameter 
of 0.7 mm. Scattering from the blank capillary was 
measured as a background profile. We performed a 
total scattering measurement using a SmartLab (Rigaku 
Corp.) equipped with a high-speed 1D detector (D/teX 
HE). The incident X-rays were monochromatized by 
a focusing multilayer mirror, and the obtained X-ray 
energy was EAg Kα＝22.11 keV. The total scattering 
measurement was done with the scattering angle 2θ 
and its corresponding scattering vector Q ranging from 
2.4° and 0.47 Å－1 to 157° and 21.958 Å－1, respectively. 
The structure factor Sobs(Q) and the PDF Gobs(r) were 
obtained using established correction procedure(6).

Fig. 5. An example of “the local term” FL
obs (Q) and “the 

periodic term” FP
obs (Q) separated from the observed 

Sobs(Q) of crystalline Ni at a maximum distance 
rmax＝20.0 Å.

Fig. 6. The RMC modeling results of crystalline Ni. (a) 
Structure factors S(Q): the calculated structure factor 
SRMC(Q) (red solid line), the observed structure factor 
Sobs(Q) (gray broken line), and the residual curve 
between Sobs(Q) and SRMC(Q) (green solid line), (b) 
The estimated structural model of Ni.

Fig. 7. The displacement histogram of Ni atom calculated 
from the atomic coordination before and after RMC 
calculation.
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3.3.2 RMC calculation
To evaluate the distortion of the MnO6 octahedra 

in the spinel LMO, RMC was performed using an 
initial atomic arrangement obtained from 4a×4 a×4a 
unit cells of the cubic spinel LMO whose lattice 
parameter was determined by Rietveld refinement as 
shown in Table 1. Trial moves whose magnitudes were 
at most Δr＝0.1 Å were generated for each MC step. 
The obtained structural model was visualized with the 
computer program VESTA(39).

3.4 Results and discussion
There is good agreement between the observed 

structure factor Sobs(Q) and the calculated structure 
factor SRMC(Q) (Fig. 8a) as indicated by Rp＝2.80%. 
Figure 8b also shows the estimated structural model of 

the spinel LMO. To characterize the valence of each 
simulated MnO6 octahedra, the valence of all Mn atoms 
was evaluated using the bond valence sum (BVS) 
method, with parameters r0＝1.75 Å and B＝0.374 Å for 
the Mn–O bond(40).
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where BV is the bond valence sum, n is the number 
of nearest bonds, r0 is the parameter for the bond, ri 
is the distance of the bond, and B is the bond valence 

Table 1. The atomic coordination of cubic spinel-LiMn2O4 
(Fd3 ̅m, Origin Choice 2, a＝8.24352 Å).

Atom x y z Site Occupancy

Li 7/8 7/8 7/8 8a 1.0
Mn 1/2 1/2 1/2 16d 1.0
O 0.2626 0.2626 0.2626 32e 1.0

Table 2. The Mn valences, percentage, and the distortion 
parameter Δ̅val of each Mn valence for 4×4×4 
calculation box.

Valence Percentage (%) Distortion parameter, Δ̅val (×10－4)

Mn2＋ 5.56 228.76
Mn3＋ 58.30 107.15
Mn4＋ 35.74 46.13
Mn5＋ 0.4 24.38

Fig. 8. The RMC modeling results of spinel LMO. (a) 
Structure factors S(Q): SRMC(Q) (red solid line), 
Sobs(Q) (gray broken line), and the residual curve 
between Sobs(Q) and SRMC(Q) (green solid line), (b) 
The estimated structural model of LMO (Mn (violet), 
O (red), Li (green–yellow)). The displayed scale for 
each atom applies the atomic radius.

Fig. 9. The Mnn＋–O pair distribution function g(r) of the 
MnO6 octahedra for each Mn valence: Mn3＋ (blue), 
Mn4＋ (red)

Fig. 10. The O–(Mnn＋)–O angular histogram of the MnO6 
octahedra for each Mn valence: Mn3＋ (blue), Mn4＋ 
(red).
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parameter.
The results are listed in Table 2. The average valence 

of the Mn sites is ＋3.3, which is lower than that of the 
Mn site calculated for the cubic spinel LMO (＋3.5). 
This indicates that the number of Mn3＋ atoms is larger 
than that of Mn4＋ in the low temperature LMO. The 
correlations related to Mn＋2 and Mn＋5 are not used for 
detailed discussion of MnO6 octahedra because those 
percentages (Mn＋2: 5.56% and Mn＋5: 0.4%) are very 
low.

Figure 9 shows gMn–O(r) for each Mn atom valence. 
The average bond length of Mn3＋–O and the associated 
standard deviation σ are 2.05 Å and 0.0784 Å, respectively. 
On the other hand, the average bond length of Mn4＋–O 
and the associated standard deviation σ are 1.94 Å and 
0.0294 Å, respectively. These results indicate that the 
Mn3＋–O bond is longer and has a wider distribution 
compared to Mn4＋–O. Figure 10 shows the angular 
histogram of O–Mnn＋–O for each Mn atom valence. 
The angular histogram of the ideal octahedra shows a 
peak at 90°, but the simulated Mn3＋ angular histogram 
shows a peak at less than 90° and a wider distribution 
than that of Mn4＋. We also define the average distortion 
parameter of MnO6 octahedra Δ̅Val for each Mn valence 
as:

Val
val =1

1
Δ Δ ,= 

n

j
jn

   (18.2)

where nval is the number of each valence Mn atom 
categorized by the BVS analysis and Δj is the distortion 
parameter for each MnO6 octahedra(27). Table 2 also shows 
the average distortion ∆̅Val for each Mn valence. The Mn3＋ 

O6 octahedra are more distorted and show 2.3 times 
larger Δ ̅3＋ than that of Mn4＋O6 octahedra. We have also 
performed RMC simulation using the estimated structural 
model of 3a×3a × 3a unit cell and obtained similar 
quantitative results, indicating that the present results have 
little dependence on the simulation box size when the 
size of the simulation box is sufficiently large. According 
to the results above, the present RMC procedure for 
disordered crystal materials is very useful to study small 
structural change, such as the Jahn-Teller effect reported 
in previous studies(27), (31), (41).

3.5 Conclusion
The presented RMC approach based on total 

scattering data can be applied to study precise local 
structural changes in a crystalline material, such as the 
low-temperature phase of spinel LMO.

To correctly evaluate the local structure in a 
crystalline material using the RMC method, the initial 
atomic arrangement is obtained from a crystalline 
structure searched from the database and, at a minimum, 
the lattice parameter should be refined against the 
experimental total scattering data using the Rietveld 
method. In general, RMC is performed under the 
constraint that the volume of the calculation box and the 
numbers of atoms are constant. The RMC only provides 
a structural model consistent with the experimental total 

scattering data. Therefore, other properties of a material 
(i.e., the density and atomic concentration) should be 
determined using another measurement method.

The RMC method is useful to evaluate the local 
structure in a crystalline material. However, RMC, 
which is widely used around the world, has been a tool 
rarely used by general users because it is difficult to 
choose appropriate values for the parameters. On the 
contrary, our approach can be easily used by general 
users because there is no need to set ambiguous 
parameters, such as the instrument constant. In the 
near future, we will add the proposed RMC to the PDF 
plugin.
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