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Three-dimensional modeling for complex structures based 
on small-angle X-ray scattering

Tomoyuki Iwata*

Abstract
Three-dimensional real-space modeling for hierarchical materials by matching experimental and simulated small-

angle X-ray scattering patterns is proposed. The positional arrangements of small primary particles in the cell are 
estimated by the reverse Monte Carlo modeling and the simulated SAXS patterns are derived from these models. 
This modeling has been applied to the structural estimation of a silica aerogel sample. The pore size distribution 
derived from the obtained structure model is compared to the results of the transmission electron microscopy and gas 
adsorption measurement.

1. Introduction
Certain functional materials—including catalyst 

supports(1)–(3), hybrid polymer composites(4), high-
performance rubber tires(5)–(7), aerogels(8) and so 
forth—have a hierarchical, nano-scale structure. These 
structures are composed of complex formations 
of atomic or nanoparticle-scale primary particles. 
Transmission and scanning electron microscopy (TEM 
and SEM, respectively) are commonly used as tools 
to investigate the precise structure; however, they are 
not suitable for the investigation of structures that are 
easily destroyed during sample preparation or for non-
conductive materials (insulators). On the other hand, the 
X-ray scattering method can used for non-destructive 
analysis of structures with a size ranging from sub-
nanometers to sub-micrometers, where the X-rays can 
penetrate through functional materials without any 
sample preparation.

Small-angle X-ray scattering (SAXS) is widely used 
to analyze the shape and size distribution of structures 
in the nanometer region(9). In addition, Hasmy et al. 
developed structure factor modeling based on real-
space numerical simulation, which was applied to 
the investigation of aerogels(10),(11). They reported that 
their simulated patterns exhibit oscillatory fringes 
corresponding to the single size (diameter) of the 
primary particles. In general, experimental scattering 
patterns have no such fringes because a real physical 
system is polydisperse. Therefore, a precise comparison 
between the experimental and simulated SAXS 
patterns could not be performed without introducing 
polydispersity of the primary particles (distribution 
of particles size). In this article, we will introduce a 
novel approach to build a structural model that consists 
of spherically shape particles having polydispersity 
in a cubic cell. It assumes a spherical shape for the 
particles, for the sake of simplicity, and introduces 
a size distribution in order to fit the experimental 

SAXS patterns. Particle positions, composed by the 
model, are randomly moved and evaluated using reverse 
Monte Carlo (RMC) modeling(12), (13). Simulated SAXS 
intensities from the model before and after any changes 
from the random movement of particles are compared 
to the experimental data to decide whether a particular 
model change is accepted or rejected, as judged by 
improvements in the error. The procedure is repeated 
until the error converges to a certain level.

The X-ray scattering intensity in electron units of 
the scattering vector q⃑ =kout–kin (kin and kout are the 
wavevectors of the incident and scattered X-rays, 
respectively) for a system composed of N individual 
particles is calculated from the following equation(14):
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where Fm (q⃑) and Fn (q⃑) are the form factors of the m-th 
and n-th particles, and rm and rn are the positional vectors 
of the m-th and n-th particles, respectively. If we assume 
an isotropic system and average the orientation of q⃑, then 
equation (1) can be written as a function of q= |q⃑|,
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where rmn is the inter-particle distance (rmn=|rm− rn|), and  
sinc(x) is the unnormalized sinc function (sinc(x)= 
((sinx) ⁄x). Equation (2) is the so-called “Debye 
scattering equation” (DSE)(15).

DSE is so well known that a special issue of Acta 
Crystallographica Section A was published to celebrate 
its 100th anniversary(16). It is possible to calculate the 
scattering intensity of a hierarchical structure from the 
DSE as long as we put the particles into real space. 
However, it has been found that the calculated intensities 
from the DSE are much higher than the experimental 
data in the low-q regime due to the form factor (shape) 
of a finite cell size: the periods of low-q fringes are * X-ray Research Laboratory, Rigaku Corporation.
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similar to those of a cubic particle. The former is the 
green line in Fig. 1 and the latter is the blue line. This 
cell-size effect for simulated patterns in the low-q regime 
is a serious problem for investigating the complex 
structures of composite materials that are several tens 
of nanometers in size because the small angle scattering 
pattern in this region has an essential role in determining 
those structures. Of course, a real system is much 
larger than a few hundred nanometer correlations and 
no fringes are observed in real experimental scattering 
patterns. A simple solution to avoid such unphysical 
behavior is to increase the size of cell. However, 
increasing the size of the cell drastically increases the 
computational cost as follows. When the cell size of a 
model that contains N particles is increased by A times, 
the volume of the model increases by A3 times and the 
number of the particles in the model, N, also increases 
by A3 times. Due to having double summations in the 
DSE, the calculation cost is disadvantageously increased 
by A6 times. Additionally, in the intensity calculation, 
increasing the number of particles and the cell volume 
leads to an excessively large number of iterations while 
repositioning particles in the RMC modeling. As a result, 
the computational cost of SAXS-RMC modeling is too 
high to perform on a personal computer. Therefore, 
simulation in this field requires using a supercomputer 
such as the Earth simulator (JAMSTEC) and the K 
computer (RIKEN)(17), (18).

Recently, we have successfully simulated experimental 
SAXS patterns of a silica aerogel using RMC modeling 
that was modified for a finite-size cell(19) of over a few 
hundred nanometers. In the next section, we describe the 
details of our RMC modeling modifications. Then, we will 
present an approach to analyze the three-dimensional pore 
size distribution from the obtained structural model, since 
aerogels have many nanometer-sized pores consisting of 
loosely packed particles(20) that exhibit ultralow density 
and large specific surface area. Finally, the pore size 

distribution of the obtained structure model is compared to 
the results of the TEM and the gas adsorption data.

2. Simulation of X-ray Scattering Intensity Based 
on the Real-space Structure

2.1. Modification of the DSE
Equation (2) can be divided into two cases, one in 

which the distance rmn is shorter than L and the other 
where rmn is equal to or longer:
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We will now focus on the second term on the right 
side of equation (3). When L satisfies the condition 
that there are many particle pairs in the same distance 
range around rmn, we assume that the individual 
form factor can be replaced with the mean value  
F2
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When we introduce the number density ρm(rmn) of the 
particles at a distance rmn relative to the m-th particle, 
the summation over n-th particle in equation (4) can be 
replaced by an integral:

( ) ( )

( ) ( ) ( )

2
ave

2 2
ave

sinc

4 sinc .=

∈ ≥
∞

∑ ∑

∑∫
mn

N N

mn
m n r L

N

m mn mn
m L

F q qr

NF q r r qr drπ ρ
  
 (5)

Additionally, averaging ρm(rmn) for all particles m, 
ρ(r) ≡{∑m

Nρm (rmn)}⁄N, equation (3) is re-written as:
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Owing to the finite integration range with respect to 
r in equation (6), the simulated SAXS pattern shows 
an oscillation in the low-q regime, as shown in Fig. 
1. Therefore, we have extended the integration range 
of r to infinity by assuming an appropriate value ρ(r). 
The purpose of the simulation for the SAXS pattern 
is to investigate density fluctuations in the specimen. 
When the integration is performed between r and 
r+dr, in a case in which the volume is sufficiently 

Fig. 1. SAXS patterns: observed intensity data of a silica 
aerogel sample (×  marks) and simulated patterns of 
the structural model, which has 34,983 particles in 
the 200 nm cell, by calculating in the DSE (green 
line) and in a modified-DSE (red line). The calculated 
pattern of the 200 nm cube is also shown as the blue 
line.
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large, ρ(r) can be considered to have a constant value 
ρave, corresponding to the bulk density. This means that 
the size of the simulation cell must be large enough to 
satisfy ρ(r≈Lout)≈ρave, where Lout is half the cell size. 
Introducing ρave to integrate outside of the cell, the 
integration term of equation (6) can be divided into two 
parts (inner/outer) as follows:
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To fit the experimental SAXS pattern, we also must 
take into account for the resolution of the instrument. 
When the resolution is isotropic and has the same value 
in any azimuthal direction, equation (1) can be modified 
by the convolution of the divergent q⃑ vector as follows:
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For this derivation, we assume that the form factor of 
the primary particle varies slowly in the low-q region 
and Fm(q⃑)≈Fm(q⃑′) during the integration. In the case of 
a practical SAXS instrument using a two-dimensional 
detector, the resolution is limited by the beam size on 
the detector, δD, and camera length, LC. The maximum 
angular resolution of the system is δD ⁄ LC and is 
estimated to be

D

C
,=q
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where λ is the X-ray wavelength. Then, substituting 
equation (8) for equation (7), we finally obtain

( ) ( )
2 2

, sinc exp ,
2

 ∆
≡   

 
－

q r
H q r qr    (10)

       

     

   

out

out

2 2 2
ave

2 2 2
ave ave

, =

4 , +

4 , .+

 



 





mn

N N

m n mn
m n r L

L

L

L

I q F q F q H q r

N F q r r H q r dr

N F q r H q r dr

 

 

  

 (11)

Hereinafter, equation (11) is called the “modified-DSE” 
in this article. The third term expands the integration 
range of r to infinity. It is noted that the modified-
DSE is free from the low-q regime problem. When the 
modified-DSE is applied to the data of a silica aerogel, 
the simulated patterns are in reasonably good agreement 
with the corresponding experimental data (Fig. 1).

2.2. Structural modeling of a silica aerogel
Aerogels, known to be one of the lowest-density solid 

materials, have attracted attention as thermal insulators 
with very low thermal conductivity (15 mW/m/K(21)). 
They are synthesized materials derived from wet gels in 
which the liquid component of the gel has been replaced 
with a gas by a special drying technique (such as 
supercritical drying, ambient pressure drying or freeze 
drying), without significant collapse of the gel structure. 
As a result, they contains many nanometer-sized pores 
consisting of loosely packed particles(20). Because the 
air in the pores cannot move smoothly, convection is 
suppressed. In addition, because the solid framework 
represents a small portion of the material, they are 
ineffective for heat conduction(22)–(29). These physical 
properties are closely related to the structural features of 
the primary units and their internal network structures. 
However, TEM and SEM are not suitable to investigate 
the entire three-dimensional structure of these materials 
because they can measure only very thin samples (or 
the surface of the samples), and depth information may 
be destroyed during sample preparation. Unfortunately, 
aerogels are easily shattered like glass by mechanical 
shock. Therefore, non-destructive analysis using SAXS 
(and neutron scattering) studies has been extensively 
performed by many authors(30), (31).

In order to investigate structures having a complex 
formation of primary particles by SAXS, fractal 
dimension analysis often has been discussed(32) and 
the structures have been characterized by the slopes 
of the SAXS patterns in specific q regimes(33),(34). 
These approaches are simple, and they are useful 
for categorizing structural features related to synthesis 
conditions and physical properties. However, they only 
give a qualitative approach. It is difficult to evaluate 
the physical properties of the objects quantitatively. 
Therefore, the purpose of this article is to estimate three-
dimensional structural models composed of primary 
particles that are fitted to experimental SAXS patterns 
on the basis of RMC modeling.

SAXS intensity data of a silica aerogel (SP-30; 
JFCC, Japan) was collected using a high-performance 
semiconductor detector (Rigaku HyPix-6000) on 
a laboratory SAXS measurement system (Rigaku 
NANOPIX). X-rays from a high-brilliance point-focus 
X-ray source (Rigaku MicroMax-007 HFMR) were 
focused and collimated with a multilayer confocal 
mirror (Rigaku OptiSAXSTM) and low parasitic 
scattering pinhole slits (Rigaku ClearPinholeTM). The 
SAXS pattern was collected in transmission geometry 
without any sample treatment. The resolution ∆q of 



Rigaku Journal, 38(2), 2022 10

Three-dimensional modeling for complex structures based on small-angle X-ray scattering

the instrument was 0.0064 nm −1. The specimen was 
sheetlike with a thickness of 1 mm.

To create an initial model, we need two kinds of 
primary-particle parameters: the particle size distribution 
and the volume fraction in the simulated cell. Particle 
size distribution parameters were determined from 
the observed pattern in the high-q regime (2.8<q< 
4.3 nm −1) using the Rigaku analysis software NANO-
Solver. The average diameter of the primary particle 
was found to be 2.7 nm, and the coefficient of variation 
was 0.28 under the assumption that the particle size 
distribution was a gamma function. The bulk density 
of the specimen was estimated to be 0.123 g cm −3 by 
comparing the X-ray absorption of the specimen with 
that of a reference (amorphous silica, 2.2 g cm −3). The 
volume fraction of the primary particles was 5.6 vol%. 
The derived particle size distribution and the volume 
fraction were introduced to set the weight function of a 
particle-radius random number generator and the limit 
of the particle total volume in the cell, respectively. 
According to these conditions, the total numbers of 
primary particles, N, were set to be 4,381, 34,983 and 
117,846 for simulation cell sizes of 100 nm, 200 nm 
and 300 nm, respectively. An additional assumption 
was to avoid particle-particle duplications during the 
simulation. The goodness-of-fit between the simulation 
and the experimental data is defined by using the weight 
function wi as follows:
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where IExp(qi) and ISim(qi) are the experimental and 
simulated scattering intensities, respectively, at 
wavenumber qi. Each MC iteration proceeds as follows. 
1) randomly select particles and modify their positions, 
2) evaluate the goodness-of-fit, χ′, after the movement, 
3) compare this value with the value before the 
movement χ. If χ′<χ, then the model including the 
modified positions is accepted.

The resultant three-dimensional structural model 
reproduces the experimental SAXS pattern well, as 
shown in Fig. 2. The simulated intensity in the low-q 
regime (q<0.5 nm −1) has increased about ten times 
from that of the initial structure where primary particles 
are randomly positioned (Fig. 2(a)). This suggests that 
the large-scale structures are successfully configured 
by rearranging the positions of the primary particles in 
order to fit the experimental SAXS pattern. However, 
it should be noted that, for the cell size of 100 nm, 
there are small deviations from the experimental SAXS 
pattern in Fig. 2(b), which shows an enlargement of Fig. 
2(a) in the low-q (<0.5 nm −1) regime. This is also seen 
in the graph of the density function ρ(r) shown in Fig. 
3, where the result for the 100 nm cell is a little different 

from those obtained with cell sizes of 200 and 300 nm. 
This suggests that the preferred cell size is 200 nm or 
more for simulated silica aerogel structure modeling 
matched to collected SAXS data. In the next section, 
we introduce quantitative analysis of the pore size 

Fig. 2. SAXS patterns (a) all q regime and (b) enlarged 
q<0.3 nm −1 regime. Observed intensity data of a 
silica aerogel sample (×  marks), simulated patterns 
of the RMC modeling (100 nm cell =green line, 
200 nm cell=blue line, and 300 nm cell= red line). 
The calculated pattern from the randomly positioned 
primary particles is also shown in (a) (black dashed 
line).

Fig. 3. The normalized density distribution of the primary 
particles.
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distribution for comparing the results of the obtained 
structure model based on the experimental SAXS data 
with TEM and gas adsorption.

3. Characterization of the Pore Size Distribution
In this section, we have analyzed the structural 

features in the obtained three-dimensional model. Many 
types of analyses for such complex structures have 
been developed, mainly for three-dimensional structures 
obtained by computed tomography (CT)(35)–(39). First, 
the observed image is transformed to binary data that 
assigns grid point values (GPV) to their pixels; for 
example, an inside object is set to 0 and an outside 
object set to 1. The Euclidean distance map (DM)(40), (41) 
can be calculated by the distance transformation from 
the original binary GPV. Mathematically, when we 
characterize the object (pore) Ω as shown in Fig. 4(a), 
GPV of DM at a point of p⃑ inside Ω is calculated by

RDM (p⃑)=min ({d(p⃑, x⃑)|x⃑∈∂Ω}), (14)

where d(p⃑, x⃑) is the Euclidean distance between p⃑ and 
x⃑, ∂Ω is the surface of Ω, and x⃑∈∂Ω is a grid point in 
∂Ω. Equation (14) is intended to find the nearest surface 
point from p⃑ to the surface of Ω. The largest radius 
(RDM) of the sphere (SDM) centered at p⃑ is completely 
inside the object. The color map expression of the 
DM is shown in Fig. 4(b). Hilderand and Rüegsegger 
developed a volume-weighted distance transformation 

in order to investigate the thickness of objects(42) that is 
named “Local Thickness (LT).” GPV of LT is defined by 
the following equation.

DLT(p⃑)=2 max ({RDM(x⃑)|RDM(x⃑)>d(p⃑, x⃑), x⃑∈Ω}). 
 (15)

The equation replaces RDM(p⃑) by the largest GPV 
belonging in the same SDM. Hereinafter, it is called the 
“LT transformation,” and the color map expression of 
the LT transformation is shown in Fig. 4(c). An example 
of an LT transformation for two-dimensional simple 
case is shown in Fig. 5. This analysis is calculated 
using the software ImageJ (43) with their plugin for 
“Local Thickness” analysis(44). Fig. 5(a) shows a color 
map of the LT transformation for a ball and stick, and 
a histogram of the map is shown in Fig. 5(b). It has 
maxima at 250 and 400 pixels, which correspond to 
the thickness of the stick and the diameter of the ball, 
respectively. The LT transformation can be applied 
to extract the size distribution quantitatively. It is 
applicable not only for such simple structures, but also 
for general, complex-shaped objects.

3.1. Pore size distribution analysis of obtained 
structural model from silica aerogel SAXS 
data

In order to analyze the constructed model structure 
based on the SAXS pattern by this LT transformation, 

Fig. 4. Illustrations of the binary picture transformation.
(a) Source binary picture with a target object Ω and assigned spheres when we calculate grid-point values at the 
point p⃑, those spheres SDM and SLT are for the transformations in the distance map (DM) and the local thickness 
(LT), respectively.
Computational transformation results, (b) for the DM and (c) for the LT, are shown as the color maps.

Fig. 5. Local thickness (LT) transformation results of a ball and a stick.
(a) a color map and (b) histogram.
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we have defined the following DM whether outside or 
inside of the n-th primary particle:

RDM (p⃑)=min (d(p⃑, rn)−Rn) (16)

where rn and Rn are the position and radius of the n-th 
primary particle, respectively. When RDM (p⃑) is positive, 
zero or negative, this corresponds to the position p⃑ being 
outside, on the surface of, or inside the primary particle, 
respectively. Then, we can define the LT transformation 
by the same procedure using equation (15). The actual 
LT transformation was performed at 300 ×300×300 grid 
points in the case of 300 nm cell size. Fig. 6(a) shows 

the calculated structural model, and a three-dimensional 
LT transformed image (color map of pore size) is shown 
in Fig. 6(b), visualized using the computer program 
VESTA(45). The histogram of the obtained pore size 
distribution is shown in Fig. 7. It is noticed that the 
distribution calculated from a cell size of 100 nm is 
shifted a little toward a smaller value than those from 
cell sizes of 200 and 300 nm, as with the graphs of the 
low-q regime SAXS pattern (Fig. 2(b)) and the density 
function (Fig. 3).

3.2. Pore size distribution analysis using TEM 
data

The specimen was tapped and softly ground in a 
mortar, followed by deposition with ethyl alcohol on 
a carbon grid, and observed using TEM (JEOL, JEM-
2100F(HRPP)). The observed TEM image is compared 
with a LT transformation image in Fig. 8. To compare 
pore size distribution of the two-dimensional TEM 
image to three-dimensional analysis, it is assumed that 
the area ratio fMap(D) is converted to volume fraction  
fVol (D) as follows:

Fig. 6. Different representations of the estimated structure 
model of the silica aerogel; (a) Particles arrangement 
in the three-dimensional space, and (b) Pore size 
distribution.

Fig. 7. Histograms of the pore size distribution with cell 
sizes of 100 nm (green line), 200 nm (blue line) and 
300 nm (red line). Each histogram is the mean value 
calculated from five-times repeating results of the 
RMC modelling.

Fig. 8. Comparison of (a) TEM image of the silica aerogel and (b) corresponding pore size distribution.
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where A is a normalization constant.

3.3. Pore size distribution analysis by using gas 
adsorption measurement

First, the sample was outgassed at 423 K for 12 hours 
under vacuum, then a nitrogen gas adsorption/desorption 
measurement was performed on Autosorb-iQ from 
Quantachrome Instruments. According to the IUPAC 
classification(46), the adsorption/desorption isotherm is a 
type-IV isotherm, which is associated with mesoporous 
structures (Fig. 9). The pore size distribution was 
derived from the adsorption data using the Barrett–
Joyner–Halenda (BJH) method(47) and the Non-Local 
Density Functional Theory（NLDFT）method(48). The 
specific surface area sBET (=792 m2/g) was determined 
from the multipoint Brunauer–Emmett–Teller 
(BET) (49) plot. The total volume of open pores, vOpen 
(=4.41 cm3/g), was directly calculated from the volume 
of adsorbed nitrogen gas at the highest relative pressure 
(P/P0=0.99). Thus, the apparent average pore diameter 
DBET (=4vOpen/sBET) is 22.3 nm, when all the open 
pores form a cylinder shape. We calculate each volume 
fraction, that of particles VParticle, open pores VOpen, and 
closed pores VClosed, by the following equation:

Particle Open Closed Particle Open Closed

Particle Open Closed

: : : :=
100 vol%+ + =





v v v V V V
V V V    (18)

where the lowercase v are the volume per 1 g of the 
sample. Substitute 1/2.2 into vParticle and 5.6 vol% into 
VParticle, where 2.2 and 5.6 are the particle density and 
the particle volume fraction used in the SAXS analysis, 
respectively. The resultant ratio of VParticle : VOpen : VClosed 
is 5.6 : 54.3 : 40.1. This suggests that over 40 vol% 
pores in the aerogel are missed using the gas adsorption 
measurement.

4. Discussion
Normalized pore size distributions P(d) obtained 

by SAXS, TEM, and gas adsorption methods, with 
horizontal axis diameter d, are shown in Fig. 10 and 
statistical values (median, mean, and mode of diameters) 
are listed in Table 1. It should be noted that the results 
of TEM image analysis were calculated in the d<30 nm 
regime due to the limited field of view in the obtained 
image. The pore size variations seem to extend over 
the 30 nm range and show large fluctuation in this 
region. Regarding the calculated pore size distribution 
from all TEM images, median, mean and mode values 
are 18.1 nm, 20.4 nm and 42.6 nm, respectively. Even 
considering this uncertainty in the TEM results, the 
obtained median diameters are in good agreement with 
each other, except for the result of the BJH method. It 
is slightly bigger than the others and agrees with the 
average pore diameter DBET (=22.3 nm). On the other 
hand, the mean diameter of BJH is remarkably smaller 
than those of the others, because their distribution profile 
has a peak around 2 nm. However, it is known that the 
BJH method is less reliable for such small pore analysis, 
and the mean diameter is calculated as 19.8 nm, if we 
ignore the “less than 5 nm” region. This agrees with the 
SAXS and NLDFT results. On the other hand, the mean 
diameter from TEM is relatively smaller than the others. 
This may be because smaller pores (less than 10 nm) 
might remain after sample pulverization.

Table 1. Comparison of pore size distributions.

SAXS TEM* BJH NLDFT

Median (nm) 18.9 18.1 22.5 19.7
Mean (nm) 18.0 15.8  9.7 19.8
Mode (nm) 19.5 16.8 18.0 13.9

* TEM’s diameters were calculated in the d<30 nm regime.

Fig. 10. Comparison of the pore size distributions: TEM 
(black line) with gray error bars, Gas adsorption 
(BJH: green line, NLDFT: blue line), SAXS (red 
line).

Fig. 9. Nitrogen gas adsorption/desorption isotherms of 
silica aerogel.
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5. Conclusion
We have introduced an RMC modeling method 

based on SAXS patterns in order to build a three-
dimensional aggregated structure composed of a set of 
primary particles, and successfully simulated a three-
dimensional structure of silica aerogel(19). Pore size 
distribution analysis from the obtained structure model 
is also presented using DM and LT transformation. The 
result is compared with that of TEM and nitrogen gas 
adsorption data, and the obtained median diameters 
are reasonably consistent with each other. To perform 
SAXS measurements, special sample preparation is 
not required, so the hierarchical structure of sample 
materials can be retained as is, even for samples 
made from the soft materials. The next challenges 
are to simulate physical properties of the materials; 
e.g., permeability of the materials, based on SAXS-
RMC modeling and performing direct comparison with 
physical experiments.
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