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1.　Introduction
Lithium-ion batteries are secondary (rechargeable) 

batteries that are used for a wide range of applications, 
from mobile devices to electric vehicles, as they 
combine both high energy density and excellent power 
characteristics. In recent years, research has been 
conducted toward the realization of an all-solid-state 
lithium battery, in which the organic electrolyte is 
replaced with a solid lithium conductor (Fig. 1). In many 
existing battery systems, including lithium-ion batteries, 
the electrolyte in which the supporting salt is dissolved 
is responsible for transporting carrier ions between 
the electrodes; in all-solid-state batteries, ion transport 
is performed by a solid electrolyte. At the same time, 
electrons flow through the external circuit, delivering 
power to the devices. The use of a solid electrolyte is 
believed to eliminate problems such as liquid leakage 
and electrical shorts, as well as explosions that can occur 
when an organic electrolyte is used, thus improving 
safety and reliability.

Discovering and producing an effective solid electrolyte 
is a significant challenge in developing solid-state lithium 
batteries. This means that a pure ionic conductor is 
required, in which only lithium ions diffuse at high speed, 
without electron conduction taking place. Various material 
systems, such as glass, glass ceramics, crystals, and 
polymers, have been developed as solid electrolytes(1),(2). 
Thus far, sulfide-based materials are the only materials 
that exhibit ionic conductivity characteristics comparable 
to existing liquid electrolytes (≧10−2 S cm−1)(3)–(5).

Many researchers have been developing and analyzing 
potential electrode materials and solid electrolytes, 
with a particular focus on crystalline materials. All-
solid-state lithium batteries would give rise to the 
possibility of all battery components being made from 
crystalline materials; therefore, the importance of phase 
identification and crystal structure analyses by X-ray 
diffraction (XRD) measurements will increase.

In this technical note, we will introduce XRD 
measurements and explore how the data can be used 
in the search for materials related to all-solid-state 
batteries, along with examples of our own research.

2.　Introduction of a Case Study of Material 
Search Using Machine Learning

To realize all-solid-state lithium batteries, solid 
electrolyte materials that exhibit lithium conductivity 
are being developed. Sulfide-based materials with 
high ionic conductivity are the primary focus, but 
there is also interest in the development of oxide-
based materials that are highly stable. Synthesis 
conditions and compositional optimization are at the 
core of the development of oxide systems based on 
existing crystalline materials that have relatively high 
conductivity at room temperature (～10 −3 S cm −1), such 
as lithium superionic conductors (LISICON), perovskite, 
and garnet crystals. Meanwhile, in 2018, LiTa2PO8 
(1.6×10 −3 S cm −1), a new material with a unique 
composition and crystal structure, was reported(6), 
suggesting the possibility of discovering materials of 
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Fig. 1. Schematic diagram of constituent materials and reactions of lithium-ion and all-solid-state lithium 
batteries.
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novel composition and structure in the search for 
a feasible oxide electrolyte. However, searching for 
materials with unexplored compositions requires a lot 
of labor, and success relies strongly on the experience 
and intuition of the researchers. Therefore, there is a 
need to develop a highly efficient approach to search for 
materials that shortens the process leading to material 
discovery.

We have been working with Dr. Isao Tanaka and 
Dr. Atsuto Seko of Kyoto University to develop an 
efficient way to search for new materials using machine-
learning techniques. We focused on the development of 
new material search methods by combining unknown 
stable composition prediction using recommendation 
systems(7), (8) and synthetic chemistry (element 
selection). The aim is to efficiently find new oxide-
based materials that exhibit excellent lithium-ion 
conductivity. Recommender systems are commonly 
employed to recommend unpurchased products to users 
that suit their interests and tastes using their internet 
purchase and browsing histories, and is one of the most 
common machine learning methods available. When 
such a recommender system is applied to material 
development, the chemical compositions contained in 
a database of known materials, such as ICSD, are used 
as learning data to propose unknown compositions 
with a high possibility of existence. For example, by 
learning the known combinations of M, M′, a, b, c, 
and d, denoted LiaMbM′cOd, it is possible to predict 
(recommend) an unreported combination of elements 
and composition ratios based on the degree of similarity. 
Since the predicted composition contains information 
(expected value) related to the probability of existence, 
a relative expected value can be obtained for the 

possibility of existence of the material. This can be 
more easily understood by thinking of the process 
as being equivalent to a product of high similarity or 
relevance to a previously purchased product showing up 
in a “recommended product” section while browsing. 
In other words, information regarding the chemical 
composition database recommended by machine 
learning provides important guidance in determining a 
specific search area (chemical composition) for finding 
a new material after selecting an element combination.

We will now explain the process of material search. 
First, it is necessary to select constituent elements that 
are expected to have high ionic conductivity; in this 
example, we focused on the phase diagram of Li–Zn–
Ge–O(11), (12) in which LISICON was reported(9), (10). 
A pseudo-ternary phase diagram of Li2O–ZnO–GeO2 
is created, as shown in Fig. 2, and reported materials 
are plotted. There is a classical technique that involves 
synthesizing solid solutions by searching on the tie 
line of known materials, which requires exhaustively 
selecting and synthesizing compositions. In this 
situation, the probability that an unknown material with 
a new composition exists is only a prediction based on 
the researcher’s knowledge, experience, and intuition, 
and it is unlikely that a new material will be found. By 
making good use of a recommender system in such 
situations, it is possible to identify compositions that 
are likely to form a stable phase. Unknown chemical 
compositions predicted by the recommender system 
are shown in Table 1 and are plotted in Fig. 2. The 
points represented by diamonds in the figure are the 
compositions predicted by the recommender system, and 
the numbers shown next to them correspond to the rank 
of probability of existence in the phase diagram. From 
here, promising search areas and compositions will be 
determined specifically, before carrying out synthesis 
and evaluation. Based on these guidelines, we have 
found novel lithium conductors in Li–Ge–P–O systems, 
Li–Zn–Ge–O systems, etc.

Here, we introduce the XRD patterns obtained while 
searching through the pseudo-ternary phase diagram 
(Fig. 3). Measurements were taken using SmartLab 
(Rigaku, Cu Kα) with a 2θ scanning range of 10–50° and 
a step width of 0.01°. The phases in the XRD patterns 

Fig. 2. Example of a material search utilizing the recommender 
system and Li–Zn–Ge–O composition: synthesis and 
evaluation are performed while referring to a map, 
which is a pseudo-ternary phase diagram containing 
reported materials and predicted compositions.

Table 1. Li–Zn–Ge–O compositions predicted from the 
recommender system.

No. Predicted composition Indicator of stability

 1 Li2ZnGe2O6 0.1467
 2 Li2Zn2Ge2O7 0.0914
 3 Li4ZnGe3O9 0.0156
 4 Li6Zn2Ge8O21 0.0135
 5 Li6Zn6Ge4O17 0.0099
 6 Li6Zn4Ge6O19 0.0095
 7 Li2Zn3GeO6 0.0093
 8 Li2Zn3Ge2O8 0.0092
 9 Li4ZnGe2O7 0.0086
10 Li2Zn2Ge3O9 0.0077



Rigaku Journal, 37(2), 2021 3

Utilization of X-ray diffraction data in machine-learning based material exploration for all-solid-state lithium batteries

were identified using PDXL (Rigaku), and the crystal 
phases obtained from each composition were assigned 
to known and unknown phases, which are summarized 
in Table 2. It was found that unknown phases (Unknown 
I, II) were obtained when the samples were synthesized 
according to the ratios of predicted compositions 4 and 
10, respectively. On the other hand, when synthesized 
using other compositional ratios, we obtained a mixed 
phase of known materials. The known materials detected 
were mainly starting materials, lithium-free composite 
oxides, or LISICON-related phases. To create a new 
material, we focused on the unknown phases. Predicted 
composition 4 was chosen in particular as it contains 
Unknown I, which is thought to have a higher Li content 
than Unknown II.

In Predicted Composition 4 (Li6Ge8Zn2O21), we 
confirmed both known (Li2GeO3 and Li2ZnGe3O8) 
and unknown (Unknown I) phases. Despite fixing the 
preparation ratio of the main materials to that of the 
predicted composition and examining the treatment 
conditions of the precursor (e.g., calcination temperature 
and time, etc.), it was difficult to reduce the number of 
impurities. Therefore, we believed that the composition 
of Unknown I was significantly different from Predicted 
Composition 4 and tried to estimate it.

The composition ratio of known materials was 
estimated from the intensity ratio of the diffraction 
lines using PDXL, and it was found to be 
Li2GeO3 : Li2ZnGe3O8＝23 : 77. The net composition 
of all impurities was calculated based on this 
information. Considering that the unknown phase 
existed in the region of the extension line connecting 
this net composition and the preparation composition 
(Li6Zn2Ge8O21), synthesis and phase identification were 
carried out by expanding the search area (Fig. 4). It 
was found that Unknown I could be synthesized almost 
entirely of monophasic Li3Zn0.65Ge4.35O10.85. As seen in 
the XRD results in Fig. 4, under optimized composition 
and synthesis conditions, the diffraction peaks attributed 
to Li2GeO3 and Li2ZnGe3O8 largely disappeared. In 
addition, scanning electron microscopy (SEM)/energy-
dispersive X-ray spectroscopy (EDX) observations 

confirmed that the synthesized sample showed an almost 
uniform elemental distribution, confirming that a new 
material with a novel composition and an unknown 
structure was obtained.

The ionic conductivity of this new material was 
evaluated by the AC impedance method (Fig. 5). The 
ionic conductivity of a cold-pressed pellet sample 
at room temperature, including the bulk and grain 
boundaries, was 2.2×10 −7 S cm −1, and its activation 
energy was determined to be 40 kJ mol −1. To separate 
the bulk and grain boundary components, the ionic 
conductivity of the sample was evaluated after 
re-calcination. Although it was difficult to separate 
the resistance components under the conditions 
examined, the resistance—including bulk and grain 
boundaries—decreased, and its ionic conductivity was 
1.1×10 −6 S cm −1 at room temperature. By looking at the 
XRD data before and after re-calcination, we saw that 
diffraction peaks sharpened, and crystallinity improved. 
Furthermore, we found that the relative density of the 
pellets increased by approximately 18% from synthesis 

Fig. 3. XRD patterns of the Li–Zn–Ge–O system materials 
obtained by material search.

Table 2. Phase identification results of Li–Zn–Ge–O samples 
obtained by material search.

No. Predicted composition Phases identified

 1 Li2ZnGe2O6
Li2ZnGeO4 
Li2ZnGe3O8

 2 Li2Zn2Ge2O7

Li2ZnGeO4 
Li2ZnGe3O8 
Zn2GeO4

 3 Li4ZnGe3O9

Li2ZnGeO4 
Li2ZnGe3O8 
Li2GeO3

 4 Li6Zn2Ge8O21

Unknown I 
Li2ZnGe3O8 
Li2GeO3

 5 Li6Zn6Ge4O17

Li2ZnGeO4 
Zn2GeO4 
ZnO

 6 Li6Zn4Ge6O19

Li2ZnGeO4 
Li2ZnGe3O8 
Zn2GeO4

 7 Li2Zn3GeO6
Li2ZnGeO4 
ZnO

 8 Li2Zn3Ge2O8

Li2ZnGeO4 
Zn2GeO4 
ZnO

 9 Li4ZnGe2O7

LISICON 
Li2ZnGeO4 
Li2GeO3

10 Li2Zn2Ge3O9

Unknown II 
Li2ZnGeO4 
Li2ZnGe3O8 
Zn2GeO4 
Li2O
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(2.62 g cm −1) to re-calcination (3.08 g cm −1). It was 
revealed that the improvement in ionic conductivity was 
influenced by the decrease in the resistance components 
of the bulk and grain boundaries. In addition, the 
ionic conductivity after re-calcination reached about 
twice that of Li14Zn(GeO4)4

(10), which has a similar 
composition, and a relatively high conductivity among 
LISICON-based materials. A lithium conductor 
(Li6Ge2P4O17) with a new composition and unknown 
structure was found in the Li–Ge–P–O system using 
a recommender system, XRD measurements, phase 
identification, and data interpretation. Until now, we 
have not discovered a superionic conductor that can 
be used as a flagship material. However, by combining 
machine learning and synthetic chemistry methods and 
ideas, we can expect to streamline the search for ionic 
conductors. In addition, by elucidating the crystal 

structures of unknown phases found through a series 
of studies, it will be possible to start a material search 
using new materials.

3.　Conclusion
In this technical note, we introduced the role of XRD 

measurement and diffraction data in the search for new 
materials. As an example, we chose to explore all-solid-
state lithium battery-related materials, especially solid 
electrolytes. As previously mentioned, XRD analysis 
is one of the most powerful methods for the search and 
evaluation of materials suitable for solid electrolytes. 
This is the latest approach to material search that utilizes 
machine learning, but the acquisition and interpretation 
of diffraction data are based on classical methods 
and ideas. Of course, at the cutting-edge, high-speed 
measurements using automatic sample exchangers 

Fig. 4. Material search procedure around Predicted Composition 4 (Li6Ge8Zn2O21), XRD patterns and results 
of SEM/EDX observations of the optimized composition.

Fig. 5. Ionic conductivity and XRD patterns of Li3Zn0.65Ge4.35O10.85 before and after re-calcination.
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and two-dimensional detectors and the deployment of 
computational methods that combine data analysis and 
clustering analysis by automatic peak search are also 
progressing. In other words, it has become possible 
to incorporate combinatorial and machine learning 
methods into the determination of material search 
guidelines, data acquisition, and analysis. At the same 
time, there is currently no one-size-fits-all method that 
makes everything possible. The most important aspect 
of modern material searches should be to combine the 
established and highly reliable classical search methods, 
experiments, and analytical techniques with the latest 
combinatorial experiments and computational methods 
to improve the search efficiency of a target material or 
material system.
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