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A current perspective of the state-of-the-art in stress 
analysis

Akimitsu Nezu*, Hitomi Matsuzaka* and Ryouichi Yokoyama**

1.　Introduction
This paper discusses recent methods in X-ray stress 

analysis. The authors have selected three examples 
thought to be the most practical from among the many 
X-ray stress measurement and analysis methods other 
than the conventional sin2 ψ method. The examples 
of analyses presented here are: (1) residual stress 
measurement using the multiple-hkl method, (2) residual 
stress measurement of samples with shear stress in the 
depth direction, and (3) residual stress measurement 
and line-broadening of diffraction in samples with fibre 
texture using the crystallite strain analysis method.

2.　  X-ray residual stress measurement using the 
multiple-hkl method

2.1.　  Thin-film X-ray diffraction measurement 
using the grazing-angle incidence method

In surface treatment using hard ceramic films, the 
materials used have outstanding properties such as 
low friction, and wear, heat, and corrosion resistance, 
and thus such films are widely used in cutting tools, 
machinery parts, dies, decorations, magnetic recording 
media and other applications. Typical examples of 
ceramic films include nitrides such as TiN, TiAlN, TiC, 
AlN and CrN. Among these, TiN films can be used at 
high temperatures while maintaining high hardness 
and good adhesion with steel and cemented carbide. 
As a result TiN is used in a wide range of fields as a 
protective coating material. The PVD (Physical Vapor 
Deposition) and CVD (Chemical Vapor Deposition) 
methods are used to form TiN films. The PVD method, 
in particular, has a treatment temperature of 500°C or 
less. This allows TiN coatings to be applied to high-
speed steel or die steel at or below the tempering 
temperature. In addition, since these hard films are 
made of chemical compounds they can be embed with 
previously unattainable characteristics such as the ability 
to form a very high-hardness film by shifting chemical 
composition ratios. Therefore, much R&D is being 
carried out with the aim of achieving new functional 
materials for coating using the PVD method. However, 
residual stress and strain during film formation and in 
use shorten the material life through film peeling and 
cracking. Thus it is extremely important to understand 
the film stress conditions. 

The most effective means of measuring residual 

stress is X-ray diffractometry, which enables non-
destructive, non-contact evaluation of crystalline 
materials. However, X-ray penetration depth for metals 
and ceramics is just a few μm, and with general-
purpose measurement (θ/2θ scanning) there are limits 
on selective evaluation of information only from thin 
films or extreme surface layers of thickness 1 μm or less. 
If the grazing-angle incidence method, in which X-rays 
are radiated only onto the sample surface, is used in 
this case, it is possible to control the X-ray penetration 
depth, and this makes it possible to evaluate residual 
stress in regions which can not be evaluated with a 
general-purpose measurement(2). This section presents 
an example of measuring residual stress in a TiN film 
coated on a steel material.

2.2.　Multiple-hkl method
The most widely known X-ray stress measurement 

method, the sin2 ψ method, is a technique that uses a 
specific lattice plane (h k l) in a polycrystalline material 
and observes each of the lattice spacings (d) by tilting 
the angle ψ. Here ψ indicates the angle between the 
sample surface normal and the lattice plane normal. 
The advantages of the sin2 ψ method are that the stress 
can be analyzed even if the lattice spacing (d0) in the 
unstrained state is not exactly known. The stress value 
is easily obtained by the slope of a regression line on a 
graph called a sin2 ψ-2θ graph, in which sin2 ψ is taken 
as the horizontal axis and 2θ as the vertical axis. At this 
time, the residual stress (σ) in the tilt of the direction 
of ψ angle is given as the product (σ=M · K) of the 
regression line slope (M) and the stress constant (K) 
determined by the elastic constants of the material under 
examination.

However, a problem arises here when considering 
stress measurement of a thin film with the sin2 ψ 
method. More specifically, if the X-ray incident 
angle increases in order to measure the variation in 
lattice spacings in a single lattice plane (h k l), then 
the volume of the thin film which contributes to 
diffraction gets smaller. This makes it impossible to 
obtain sufficient diffraction intensity, and the S/N ratio 
from the diffraction coming from the substrate crystal 
worsens. To resolve this problem, a method has been 
proposed in which, as indicated in Fig. 1, the incident 
X-ray beam is introduced into the film by fixing the 
direction at a specific grazing-angle, and then measuring 
the diffraction of multiple lattice planes through 2θ 
scanning.
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** X-ray Research Laboratory, Rigaku Corporation.

Technical articles



Rigaku Journal, 30(2), 2014	 5

A current perspective of the state-of-the-art in stress analysis

Since stress is analyzed using multiple lattice planes 
(hi ki li; i=1 to n), this method was later called the 
“multiple-hkl” method. The ψ angles of lattice planes 
observed through 2θ scanning are different from each 
other, and as a result, it is possible to observe the 
variation in the lattice spacings accompanying changes 
in the ψ angle. Therefore, this measurement method 
has the advantages that, for a thin film, the volume 
contributing to X-ray diffraction can be increased and 
the X-ray penetration depth can be controlled at nano 
nanometer scale even with thick films. The hard films 
presented in this section are films with fibre texture. The 
multiple-hkl method was applied to crystal grains with 
random orientation present in the film.

Equation (1) below indicates the relationship between 
strain and stress(3) which holds for general materials 
including crystalline and amorphous materials
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The strain εϕψ given here indicates strain of 
the diffraction plane, whose surface normal is the 
orientation inclined by ψ in the direction rotated by ϕ in 
the counterclockwise direction about the surface normal 
of the sample. σij (i, j=1, 2, 3) indicates the components 
of the stress tensor, and S1 and S2/2 are the X-ray elastic 
constants, represented by the Young’s modulus (E) and 
Poisson’s ratio (ν), as shown in Equation (2).
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With the multiple-hkl method, it is possible to analyze 
the stress σij by observing the rate of change in the 
lattice spacing (di) of multiple lattice planes, i.e., the 
strain εϕψ

hkl
 (=(di−d0i/d0i). At this time, d0i indicates the 

lattice spacing in the unstrained state of the ith lattice 
plane.

The following equation, (3), can be derived for the 
equi-biaxial stress state by setting the conditions σ33=0, 
σ23=σ13=σ12=0, σ11=σ22=σ in Equation (1).
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If the function f (ϕ, ψ, S1
hkl, S2

hkl), based on Equation 
(3), is plotted on the horizontal axis and the strain εϕψ

hkl 
on the vertical axis, then it is evident that the slope of 
this regression line will be the film stress σ we wish to 
evaluate. However, S1

hkl and S2
hkl show that the X-ray 

elastic constants depend on the lattice plane (h k l).

2.3.　Stress measurement equipment
The SmartLab fully-automatic θ–θ rotating anode 

X-ray diffractometer shown in Fig. 2 was used to 
measure residual stress of the hard film presented in this 
section. A high-output (45 kV, 200 mA) rotating anode 
with Cu tube was used as the X-ray source, and a high-
intensity parallel beam was created using a multilayer 
optic on the incident beam side. With a conventional 
optical system, a pseudo-parallel beam formed by 
constricting the slits on the incident side and receiving 
side, is limited on reduction of the angle of divergence 
available since flux is reduced dramatically. In contrast, 
if an optical element (CBO: Cross Beam Optics) with 
a parabolic multilayer mirror is used, it is possible to 
use an X-ray beam whose reflectivity of X-ray intensity 
is 70%, and with an angle of divergence is 0.04°. On 
the receiving side, divergence of the diffracted X-rays 
was suppressed by using a parallel slit analyzer (PSA: 
Parallel Slit Analyzer) with a resolution of 0.5°.

2.4.　  Results of measurement and analysis using 
the multiple-hkl method

A steel material coated with a TiN film, using an 
ion plating method classified as a PVD technique, was 
used for the measurement. The film thickness was 
approximately 5 μm, and the film surface had a silver 
luster. Incidentally, it is generally known that the color 
of a TixN1−x film varies depending on the nitrogen 
content, exhibiting a gold color with x=0.5 and a silver 
color with x=0.5. That is, it was assumed that the TiN 
film had a low reaction amount of nitrogen since the 
sample used was silver.

Figure 3 shows the diffraction profile observed 
through 2θ scanning with the incident X-ray angle fixed 
at approximately 0.4°. By comparing the intensity ratio 
of each reflection in the actual measured profile with the 
intensity ratio of each reflection in the diffraction profile 
for a randomly oriented sample, it was determined 

Fig. 1.   X-ray stress measurement of a thin-film using the 
multiple-hkl method.

Fig. 2.   SmartLab fully-automatic θ–θ rotating anode X-ray 
diffractometer.
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that the sample has a weak preferred orientation in the 
[111] axis direction. When the incident X-ray beam was 
introduced at a grazing-angle, the penetration depth of 
X-rays into the TiN film was a few tens of nm, and thus, 
the stress state of the extreme surface layer is evaluated 
relative to the film thickness.

Here, Table 1 shows the diffraction peak information 
for the TiN film, obtained from profile fitting.

In the stress analysis using the multiple-hkl method, 
the stress value was calculated using six reflections on 
the high angle side (out of eight observed reflections), 
while taking into account strain sensitivity. Based on 
Equation (3), the tensile stress observed in the TiN film 
had values of σ=1.99 GPa for stress, and Δσ=0.47 GPa 
for the confidence limit. Figure 4 shows a graph of the 
function f (ϕ, ψ, S1

hkl, S2
hkl) versus the strain εψhkl. The 

values of the Young’s modulus and Poisson’s ratio 
were set to E=429 GPa, and ν=0.19, respectively, while 
treating the material as a homogeneous isotropic body.

2.5.　Discussion
The main cause of residual stress in thin films 

is thought to be thermal stress, which arises due to 
differences in the linear expansion coefficients of the 
substrate and film. The linear expansion coefficients of 
Fe and TiN near room temperature are, respectively, 
11.8×10−6/K and 9.2×10−6/K, and after film formation, it 
is thought that compressive stress remains due to thermal 

contraction of the substrate. However, in the stress 
measurement, the residual stress of the extreme surface 
layer is evaluated relative to the film thickness, and it is 
certainly possible that the way in which strain develops 
is different from that near the boundary between the film 
and substrate. That is, while the substrate is strongly 
restrained near the boundary, there is a possibility that 
stress relaxation occurs at the film surface. In addition, a 
linear relationship is obviously shown in the function f(ϕ, 
ψ, S1

hkl, S2
hkl) vs. strain εψhkl graph, and thus it can be seen 

that the conditions used to derive Equation (3) reflect the 
stress state of the film, and that tensile stress remains in 
the film surface in an isotropic state. If an anisotropic 
stress state needs to be taken into account, the stress can 
be analyzed by setting σ11≠σ22 and σ12≠0 in Equation (1). 
In addition, the linearity of the observed graph shows 
that the stress gradient has no effect within the X-ray 
penetration depth.

2.6.　Review of the multiple-hkl method
Another advantage of the multiple-hkl method is 

that it can be applied to stress measurements in narrow 
areas. At measurement points with fixing the X-ray 
angle of incidence, such as those in the narrow bottoms 
between gear teeth or in the inside of wheels, the stress 
is facilitated to be measured by taking into account only 
the X-ray angle of diffraction.

For the above reason, the multiple-hkl method is 
effective for evaluating residual stress in thin films 
and narrow areas, and it is an analysis technique 
indispensible for complementing general-purpose 
methods of X-ray measurement.

3.　  Evaluation of residual stress in a sample with 
shear stress in the depth direction

3.1.　  Comparison with the conventional method 
of residual stress measurement

If the sin2 ψ method, which is a uniaxial stress 
measurement method, is used with a polycrystalline 
sample, the sample must satisfy the following four 
conditions.

①   Sufficient crystal grains are present in the area 
irradiated by X-ray.

② No strong texture is present in a sample.

Fig. 3.   Diffraction profile of a TiN film using grazing-angle 
incidence method.

Table 1. Diffraction peak information for TiN film.

h k l 2θ (deg) FWHM (deg) I (counts)

1 1 1  37.20 0.92 7182

2 0 0  42.93 1.35 5291

2 2 0  62.39 1.64 1505

3 1 1  74.80 1.88  883

2 2 2  78.66 1.66  654

4 0 0  94.00 2.33  130

3 3 1 105.70 2.80  232

4 2 0 109.57 2.64  449

Fig. 4. Graph of function f (ϕ, ψ, S1
hkl, S2

hkl) vs. strain εψ
hkl.
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③   Stress induced in a sample is bi-axial (σ33=σ23= 
σ13=0).

④   No stress gradient is present within the X-ray 
penetration depth.

Since the above four preconditions exist with the 
sin2 ψ method, depending on the sample’s crystal state, 
the sin2 ψ−2θ graph may display large deviations or 
may bend and become non-linear. The cause of this is 
thought to be the following four crystal states given by 
①′ to ④′ below, which correspond to the above ① to 
④, respectively.

①′   Coarse crystal grains have been formed, thus a 
sufficient number of crystal grains are not present 
within the X-ray irradiated area.

②′ Texture is present.
③′   Shear stress component (σ13 or σ23) is present 

within the X-ray penetration depth.
④′   Steep stress gradient is present within the X-ray 

penetration depth.

In addition, it is known, by taking into account the 
triaxial stress state for the above crystal states, that 
the four features indicated in the following ①″ to ④″ 
appear in the sin2 ψ−2θ graph, corresponding to the 
above ①′ to ④′, respectively.

①″   A continuous profile is not observed, and thus 
there is a large error in the slope of the sin2 ψ−2θ 
graph.

②″   Peak intensities of the profiles observed with ψ 
in specific directions are remarkably low.

③″ ψ split is produced(4),(5).
④″ Waving appears in the sin2 ψ−2θ graph.

Various residual stress measurement and analysis 
techniques have previously been proposed for samples 
with crystal states outside the scope of application of 
the sin2 ψ method. However, even if phenomena like 
those indicated here appear in the sin2 ψ−2θ graph, it 
is a well-known fact that the sin2 ψ method can still be 
used if the confidence limit (an indicator of the match 
between the sin2 ψ−2θ graph and the regression line) 
does not become large.

This section considers the crystal state that produces 
a ψ split. If the shapes differ between two sin2 ψ−2θ 
graphs observed in the +ψ and −ψ directions which 
differ by 180° in the direction in which stress is 
measured, and the slopes of the regression lines of 
the two sin2 ψ−2θ graphs differ in the +ψ and −ψ 
directions, then the respective observed stress values 
will also differ from each other. If, at this time, stress 
is only evaluated on one side using the conventional 
sin2 ψ method, a large discrepancy may arise between 
the evaluated and actual stress values.

Therefore, the following section will present a method 
of residual stress evaluation for the ψ split which is a 
problem when using the sin2 ψ method, and this will be 

called the ψ split method. However, a laboratory X-ray 
source was used here, and thus the stress in the depth 
direction was set to 0 (σ33=0).

3.2.　  Theory and technique evaluating residual 
stress with ψ split

When evaluating residual stress for a certain material, 
typical samples which might contain a shear stress 
component (σ12 or σ23) are those in which a directionally 
processing layer is formed using techniques such as 
cutting or grinding. This section discusses the method of 
evaluating residual stress when a ψ split occurs, using 
as an example a sample with a directionally processed 
layer formed through shot peening treated from one 
direction only.

When residual stress parallel to the in-plane 
component of the force (red arrow mark) is evaluated 
using the sin2 ψ method in the directionally processing 
layer (on the B line) as shown in Fig. 5, it is known that 
the sin2 ψ−2θ graphs in the two directions observed for 
the +ψ and −ψ directions are divided into the top and 
bottom of an ellipse. Hereafter, the +ψ direction will be 
indicated as ψ+ and the −ψ direction as ψ−. The X-ray 
residual stress was evaluated for a sample for which a ψ 
split was intentionally produced by treating shot peening 
from one direction on a round iron rod.

The close-up view in Fig. 5 shows the stress 
component added to the round rod by the shot, viewing 
from the rod’s cross section. Relative to the positions 
A and B in the circumferential direction where the 
shot contacts the round rod, the shot strikes the sample 
surface perpendicularly at A. At B, on the other hand, 
the shot strikes in a “shearing” fashion from an inclined 
direction, and thus at B a stress (strain) component 
parallel to the sample surface, i.e., a shear stress 
component, is produced, and a directionally processing 
layer is formed.

Figure 6 shows the triaxial stress state in the 
directionally processing layer B. If the direction of 
incidence of the shot is taken to be parallel to the σ1–σ3 
plane, then there is a shear stress component σ13 in the 
depth direction, and thus the σ3 axis will tilt from the 
surface normal of the sample (σ33 axis direction) due 
to rotation of the principal stress axes (red arrow; the 
three normal stress components when the shear stress 
components in all directions become zero are called the 
principal stress) around the σ2 axis.

Fig. 5. Shear stress applied due to shot peening.
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In addition, the relationship between strain and 
stress in the sample coordinate system is given by the 
following Equation (4)(12) due to the assumption here 
that σ33 is set equal to zero in the general Equation (1) 
which indicates the state of triaxial stress(12).
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For Equation (4), the strain εϕ+ψ and εϕ−ψ in the 
ψ+ and ψ− directions with respect to ϕ correspond, 
respectively, to the strain εϕψ and εϕ+180°ψ of ψ with 
respect to ϕ and ϕ+180°. Therefore, the following 
Equation (5) is obtained if the average of these strains 
(ε0°ψ+ε180°ψ)/2 (setting ϕ=0°) is calculated using 
Equation (4).
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In addition, strain at the crystal plane in the X-ray 
diffraction method is expressed as εϕψ=(d−d0)/d0, and 
thus εϕψ=(sin θ0/sin θ)−1 is obtained using Bragg’s 
equation 2d sin θ=nλ (n=1). Therefore, if the diffraction 
angle 2θ in the ψ+ direction is indicated as 2θ+, and the 
diffraction angle 2θ in the ψ− direction as 2θ−, and if 2θ 
is partially differentiated by sin 2ψ in Equation (5), and 
the result is rewritten using S2/2(1+ν)/E, the following 
Equation (6) is obtained:

2
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where σ=σ11. If M+ and M− are taken to be, respectively, 
the slopes of the sin2 ψ−2θ graphs obtained when the 
sample is treated using the sin2 ψ method for the ψ+ 
and ψ－ directions, and if the stress constant is assumed 
to be K, then the stress σ can be given finally by the 
following equation.
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In other words, this indicates that the stress given by 
Equation (7) is equal to the average, σave, of the residual 
stress values for σ0°ψ and σ180°ψ when the ψ+ and 
ψ− directions are respectively treated using the sin2 ψ 
method.

If it is assumed here that the confidence limits, Δσ0°ψ 
and Δσ180°ψ, corresponding to the stress values, σ0°ψ 
and σ180°ψ, are evaluated for the ψ+ and ψ− directions, 
respectively, then the stress values evaluated using the 
sin2 ψ method are given as follows:
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where ΔM+ and ΔM− indicate the errors of the respective 
slopes M+ and M− of the sin2 ψ−2θ graphs for the ψ+ 
and ψ− directions.

Therefore, the stress, σave, obtained using the ψ split 
method and its error Δσave are given by the following 
Equation (12) by taking the respective averages using 
σ0°ψ, σ180°ψ, Δσ0°ψ, and Δσ180°ψ, evaluated with the 
sin2 ψ method.
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Accordingly, residual stress can be easily evaluated, 
with samples when ψ split occurs, by evaluating the 
average of the stress values in the ψ+ and ψ− directions 
using the sin2 ψ method.

3.3. Introduction of a sample measurement
The SmartLab, fully-automatic θ–θ rotating anode 

X-ray diffractometer (Fig. 2), was utilized to measure 
X-ray residual stress, and the residual stress was 
evaluated using the iso-inclination method in a parallel 
beam method optical system. Table 2 shows the 
measurement conditions, and Table 3 the parameters 
used for the analysis.

For the stress measurement, the residual stress was 
measured at a point on B in the two directions as 
shown in Fig. 5: the shot direction ψ+ (ϕ=0°) and the 
opposite direction ψ− (ϕ=180°). Figure 7 shows these 
two directions of stress measurements with the sample 
placed on the sample stage of the SmartLab.

Figure 8 shows the sin2 ψ−2θ graph observed with 
the sin2 ψ method for the ψ+ (ϕ=0°) and the ψ− 
(ϕ=180°) directions.

At one measurement point on B, compressive stress 
was observed at both ψ=0° and ψ=180°, but a 
typical ψ split was observed in which the sin2 ψ−2θ 
graphs are curved and the respective stress values are 

Fig. 6. Triaxial stress state at position B.
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different from each other. The residual stress value in 
the ϕ=0° direction at a measurement point on B was 
−286.74±34.44 MPa, and the residual stress value in 
the ϕ=180° direction was −29.03±34.49 MPa. Thus, 
the residual stress value at the measurement point 
where the ψ split occurred was calculated to be 
−157.89±24.37 MPa by taking the average value based 
on the ψ split method.

4　  Residual stress measurement and line-
broadering of diffraction in a sample with 
fibre texture using the crystallite strain analysis 
method

4.1　  Residual stress measurement using the 
crystallite strain analysis method

This is a technique for analyzing residual stress 
from crystallites comprising a polycrystalline material. 
In Europe, this technique is generally known as the 
crystallite group method (CGM)(6). Since this analysis 
method determines the strain of the entire crystal 
from a point of view of the orientation and strain of 
the crystallites comprising the polycrystalline material, 
we call this technique the “crystallite strain analysis 
method.” This section discusses a technique for applying 
the crystallite strain analysis method to polycrystalline 
materials with fibre texture. Developments of this 
measurement method for films with fibre texture was 
proposed by Hanabusa(7) for the hexagonal system, and 
since then analysis techniques for biaxial and triaxial 
stress states have been proposed by Sasaki(8), Ejiri(8), 
Tanaka(9) and others. Recently, Yokoyama et al.(1) have 
developed formulae indicating the relationships between 
strain and stress, obtained by taking account of the 
symmetries of a single crystal to which the constituent 
crystallites belong. In addition, when crystallite strain 
in samples with fibre texture is taken into account, it has 
also turned out that line-broadening is observed from the 
crystallite symmetries(10). This line-broadening will also 
be discussed.

In Fig. 9, focusing on one crystallite in a 
polycrystalline material, the sample coordinate system 
Pi for the stress measurement is taken into account. 
When the crystallite under measurement is shown by 
the crystal coordinate system Xi in the sample, the 
laboratory coordinate system, in which strain of lattice 
planes is measured, is taken to be Li, as shown in Fig. 
10.

The direction in which stain of a lattice plane is 

Table 2. Measurement conditions.

Characteristic X-rays CuKα

Diffraction surface α-Fe (3 1 0)

Strain-free diffraction angle 2θ0=116.38°

Measurement method
Constant ψ method  

(iso-inclination method)

Table 3. Analysis conditions.

Analysis technique sin2 ψ method

Young’s modulus 223300 MPa

Poisson’s ratio 0.28

Stress constant −941.53 MPa/°

Fig. 7.   Stress measurement directions at a measurement 
point on B viewing from the cross-section side of the 
round rod.

Fig. 8.   sin2 ψ−2θ graph in working directions (ϕ=0°, 
ϕ=180°) of shot peening at a measurement point on B. 
(Sample provided by: Professor Shinichi Oya, Tokyo 
City University)

Fig. 9.   A polycrystalline material consisting of numerous 
crystallites (crystal grains). Each crystallite has its 
own coordinate system.
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measured is taken to be the L3 axis direction.
Figure 11 shows the relationship between the three 

(or four) coordinate systems, which are referred to in the 
stress analysis of a polycrystalline material as indicated 
above.

The four coordinate systems can be transformed 
to one another using the five matrices α, β, π, ω and 
γ. Strain and stress are expressed with a second order 
tensor, and thus if the strain εL

33 in the L3 axis direction 
observed with X-rays is indicated by the stress σkl of the 
sample coordinate system, then εL

33 can be found using 
Equations (13) to (16).

33 3 3

33 3 3

P
ij ijkl kl
P
ijkl ip jq kr ls pqrs
L

i j ij
L P

i j ijkl kl

S
S S

S

=
=
=
=

ε s
p p p p

ε ω ω ε
ε ω ω s

 

 (13)
 (14)
 (15)
 

(16)

In other words, εL
33 is the strain derived from the 

relationship between the strain and stress in the single 
crystal of a constituent crystallite in a polycrystalline 
material.

In this stress analysis, it is treated that the stress of 
each crystallite in a polycrystalline material with fibre 
texture is equal to the macro stress based on the Reuss 
model. The average stress in the polycrystalline material 
〈εL

33〉 is given by the following equation.

33 3 3

3 3

L P
i j ijkl kl

P
i j ijkl kl

S

S

=

=

ε ω ω σ

ω ω σ
 
 (17)

In the Reuss model, since the stress is equal to the 
average stress (macro stress) of the sample, the stress 
σkl can be expressed on the outside of the angular 
parentheses 〈 〉 in Equation (17).

Figure 12 shows a stereographic projection in the 
〈111〉 axis direction when the constituent crystallites 
of a sample, having the 〈111〉 axis as the fibre texture, 
belong to the cubic system with m-3 m for the Laue 
symmetry. Based on the symmetries in a single crystal 
of the crystallite, each crystallite has three mirror planes 
containing the 〈111〉 axis and the reciprocal lattice 
axes a*, b* and c*, respectively, so that there are six 
equivalent reflections around the 〈111〉 axis. When 
taking these six equivalent reflections to be (a), (a)′, 
(b), (b)′, (c) and (c)′, both groups of the three reflections 
(a), (b), (c) and the three reflection (a)′, (b)′, (c)′ have 
a relationship of 120° rotational symmetry, and the 
corresponding reflections such as (a) and (a)′ have a 
mirror plane between them.

Since the sample has the 〈111〉 axis as the fibre 
texture, it is likely that numerous crystallites are 
arranged at random around the 〈111〉 axis. That is, 
the position (a) of a certain crystallite is overlapped 
by equivalent reflections (a)′, (b)′, ..., (c)′ of other 
crystallites. However, generally there is no way to 
distinguish the overlapping reflections of multiple 
crystallites such as (a), (b), (c) and (a)′, (b)′, (c)′.

Next, let us consider the relationships between the 
symmetries in a single crystal and its residual stress. As 
shown in Fig. 12, when strain is observed at ϕ=0°, the 
positions (a), (b), (c) and (a)′, (b)′, (c)′, which have the 
120° rotational symmetry and are equivalent, cannot be 
distinguished, so that it is enough if one point from each 
group is taken as a representative point that the residual 
stress should be taken into account only for (a) and (a)′. 
These two representatives are shown as type I and type 
II in Fig. 12. If εL

33I and εL
33II indicate, respectively, two 

strains observed when the diffraction conditions are 
satisfied in type I and type II, and the biaxial stress state 
is assumed, then εL

33I and εL
33II are calculated as follows 

from Equation (16):

Fig. 10.   The four coordinate systems, X′i, Pi, Li, and Xi, in a 
polycrystalline material. Khkl indicates a scattering 
vector in the L3 direction.

Fig. 11.   The four coordinate systems transformable from 
one to another using the matrices (α, β, π, ω, 
γ). X′ indicates a coordinate system added for 
convenience.

Fig. 12.   Orientations of two crystallites, type I and type II, 
in a sample having fibre texture of 〈111〉 axis and 
belonging to cubic system.
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(19)

where σ11, σ22 and σ12 are the stress components in 
the sample coordinate system, ϕ and ψ observed 
orientations of εL

33 shown in Fig. 10, and β the angle 
from the mirror plane to (a) or (a)′, as indicated in Fig. 
12. In addition, when s11, s12 and s44 indicate the elastic 
compliance constants of a single crystal in cubic system, 
then s0=s11−s12−s44/2. Here, the following equations 
show the relationships ψ and β have to the scattering 
vector Khkl and the vectors H1 and H3 shown in Fig. 10.
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It is predicted that the two types of strains, which 
differ from each other in a stress state of the sample, will 
be observed simultaneously at the same point (ϕ=0°). 
This is attributable to the fact that the crystallinity of the 
sample with fibre texture displays a rocking curve ≤0.1°, 
and that the X-ray source for measurement has some 
angular divergence and some wavelength dispersion. 
Therefore, the strains of the respective crystallographic 
planes in the type I and type II differ from each other. 
However in the observed diffractions, it is expected that 
the respective diffraction lines observed will overlap 
each other and form a single peak.

In the Reuss model, the observed strain, i.e., the 
average strain of the sample 〈εL

33〉 is calculated as 
follows as the average of the strains εL

33I and εL
33II for type 

I and type II.
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(22)

In general, stress is obtained from data consisting 
of strain observed at several points by applying the 
method of least squares refinement to Equation (22). In 
this paper, the relationship between strain and stress in 
the constituent crystallites was evaluated by assuming 
a biaxial stress state, however relationship for a triaxial 
stress state can also be estimated in the same way from 
Equation (16).

4.2.　  Line-broadening of diffraction in the 
crystallite strain analysis method

If two strains observed at the type I and type II 
orientations, respectively, of the constituent crystallites 
in a sample with fibre texture are different from 
each other, as expected in the previous section, it is 
predicted that line-broadening(12) of the diffraction will 
be observed.

Thus, the line-broadening of the diffraction, Δ2θ(β, 
ϕ, ψ), is estimated as follows, where the difference of 
stains in Equations (18) and (19) is indicated as ΔεL

33,II–I.

0 33,
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θ β φ δ θ δ θ
θ ε

ψ
 
 (23)

The following equation shows the results of 
calculating the strain difference ΔεL

33II–I which is the 
cause of the line- broadening of diffraction of a sample 
with 〈111〉 fibre texture in a cubic system.
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 (24)

Equation (24) shows that, when the difference of 
the normal stress components (difference of σ11 and 
σ22) is large, i.e., in an anisotropic stress state, there is 
a tendency for a large amount of line-broadening in 
diffraction to appear in the ϕ=45° direction. On the 
other hand, there is tendency for a large amount of the 
shear stress components σ12 and σ23 to appear in the 
ϕ=0° direction.

5.　Conclusion
The three examples of X-ray stress analysis methods 

presented here are not frequently discussed as ordinary 
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analysis methods, but they are practical and effective 
stress analysis methods. Quantification of residual stress 
can serve as an indicator of material and structure 
strength, and thus it is an important issue for evaluating 
materials. Some of the techniques shown here have been 
commercialized by Rigaku in Japan.
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