

X線回折法における2次元検出器の活用

-HyPix-3000を用いた様々な試料の解析-

大渕 敦司*

1. はじめに

従来,X線回折装置では様々な検出器が用いられて きた⁽¹⁾.0次元検出器としてはシンチレーションカウ ンター (SC),1次元検出器としては位置敏感型ガス 計数管 (PSPC),半導体検出器,2次元検出器として はイメージングプレート (IP) やCCD検出器などで ある.IP,CCD検出器は現在でも使用されている2次 元検出器であるが,読み出し速度が遅い,ダイナミッ クレンジが狭いなどの問題があり,その用途は限 定される.ハイブリッド型多次元ピクセル検出器 HyPix-3000⁽²⁾はIP,CCD検出器にはない以下の特長を 有している2次元検出器である.

- ●広いダイナミックレンジ
- ●低バックグラウンドでの測定
- ●ゼロデッドタイムでの高速測定
- ●メンテナンスフリー

ダイナミックレンジが広いことで、薄膜試料のよう に膜からの微弱な回折線と、単結晶基板からの強い回 折線を同時に測定する必要がある場合に有利に働く. エネルギー分解能が高いため、蛍光X線が発生して バックグラウンドが上昇する試料に対しても、低バッ クグラウンドの測定が可能であり、S/Nの優れた測定 データを取得することができる.また,HyPix-3000は データ読み出しにかかるデッドタイム (タイムロス) を実質ゼロにすることが可能である. このゼロデッド タイムでの高速測定を実現したことで、シャッターレ ス測定による連続した時分割測定も可能となり、例え ば加熱を伴う in-situ 測定においても、その反応を追っ た測定が可能である. さらに、HyPix-3000には、CCD 検出器に必要な冷却装置、ガス検出器に必要なガス交 換など、面倒なメンテナンスを必要とせずに使用する ことができるという特徴もある.

*株式会社リガク X線機器事業部 応用技術センター

図1. ハイブリッド型多次元ピクセル検出器 HyPix-3000 搭載 全自動水平型多目的 X線回折装置 SmartLab.

また,HyPix-3000は,全自動水平型多目的X線回折 装置SmartLabに搭載することにより2次元検出器とし ての機能のみならず,0次元,1次元検出器としても 使用することができる.従って,これまでのようにそ れぞれの検出器を個別に準備し,用途に応じて載せ替 えるといった煩わしい作業を行う必要がない.そのた め,SmartLab-HyPix-3000システム(図1)は粉末試料 を初めとし,薄膜試料,バルク試料などの様々な試料 の測定に活用できる.さらに,これら試料を評価する ための様々な測定方法,例えば20/0測定,2次元検出 器を用いた極点測定などに用いることが可能である.

本稿では、実際にこのシステムを用いて、粉末試料、 単結晶試料、バルク試料、薄膜試料を測定した事例を 紹介する.

2. 測定例

2.1. 混合物粉末試料のRietveld 定量分析

X線回折法で結晶相の定量分析を行う際は、検量線 法、RIR法などが一般的に用いられている.これらは 優れた方法ではあるが、前者では検量線用標準試料が 必要であること、また両者共に、層状化合物、針状結 晶などの選択配向を起こしやすい成分に適用するのは 難しいといった不利な点がある.一方、Rietveld解析⁽³⁾

図2. 混合物粉末試料のRietveld解析結果(測定時間:約10分).

表1. 混合物粉末試料のRietveld定量分析結果.

結晶相 — —	mass%	
	調製値	解析值
Calcite (CaCO ₃)	43.91	42.25 (15)
Corundum (a-Al ₂ O ₃)	33.64	35.62 (17)
Zincite (ZnO)	22.45	22.13 (7)

括弧は標準偏差を示し、42.25(15)は42.25±0.15を表している.

は測定データに対して結晶構造情報から作成した計算 データをフィッティングさせて解析を行う、結晶構造 精密化の手法であるが、複数相から構成される試料に 適用した場合は,結晶相の定量値を得ることができ る. さらに同解析技法では選択配向組織の影響による 強度変化を補正⁽⁴⁾することができるので、回折ピーク 1本を定量分析に用いる検量線法, RIR法と比較して 信頼性が高い分析が可能である. Rietveld 解析を行う 際は、高強度(最強線で10,000 counts 程度)、測定範 囲の広いX線回折データが必要であることから、従来 の検出器では測定に長時間を要していたが、HyPix-3000 は1次元検出器としても使用可能であり、短時間でも Rietveld解析用測定データ取得が可能である. また, HyPix-3000のピクセルサイズは100 µmと非常に小さ いので、SCを使用して受光スリットサイズを0.1 mm (=100 µm) に設定した場合と同等の高分解能の測定 が実現できる. そこで、Calcite (CaCO₃). Corundum (α-Al₂O₃), Zincite (ZnO) の3種の粉末原料を調合し た混合物粉末をHyPix-3000により約10分程度で測定 し、得られた測定データに対してRietveld解析を試み た. 解析結果を図2に示す. 測定データと計算データ の残渣は小さく、両者は良好に一致した、解析により 得られた定量分析結果を表1に示す。Calciteの104回 折ピークは配向面として知られており、Rietveld解析 により選択配向の影響を補正したことで、調製値と解

析値は良好に一致した.このように、HyPix-3000を1 次元モードで使用することで、Rietveld解析用の測定 データを短時間で取得することが可能であることが確 認された.

2.2. 石鉄隕石の分析

HyPix-3000は約3000 mm²という有効検出面積を有 する2次元検出器であり、面積が広いことが様々な測 定に有利に働く.一例として、石鉄隕石の測定例を示 す. 石鉄隕石の内部にはガラスのような透明部分と金 属質の不透明な部分が存在する. この透明部分は非晶 質であることが考えられた.しかし、実際に透明部分 の測定を行うと、1本のみ回折線が観測された. さら に詳細な分析を行うため、HyPix-3000を用いた2次元 モードで測定を行った.一般的に0次元検出器,1次 元検出器で測定すると、 試料からの回折 X 線を検出可 能な範囲はある領域に限定される(ここでは図3に黄 色で示している領域である). その際、赤矢印で示し た回折線は走査範囲内であるため検出することができ る.対して白矢印で示した回折線は0,1次元検出器 では検出できない領域に観測され、図3で示すように X線回折パターン上では回折ピークは、赤矢印のス ポットに起因する1本しか現れない. そのため、この 試料においては、面積の狭い0、1次元検出器を用い てスポット状に観測された回折ピークを検出すること は困難である.一方,広い有効検出面積を有する HyPix-3000を用い、さらに試料を揺動しながら測定す ることで、図4に示すように複数の回折面の情報を取 得することが可能である.図4で得られた2次元回折 像を2*θ*-Iプロファイルに変換し、透明部分の定性分析 を行ったところ、Forsterite (Mg₂SiO₄)を同定するこ とができた(図5).なお、回折線がスポット状で観 測されたことから、ガラスのような透明部分は単結 晶、ないしは、極少数の結晶粒から構成されているこ とが推測された.

図3. 0次元検出器,1次元検出器を用いた際の,ガラスのような透明部分のX線回折パターン.

図4. 透明部分の2次元回折像(揺動あり).

2.3. Nd磁石の極点測定

極点測定⁽⁵⁾は、ある回折面(反射)に着目してある 回折角度にゴニオメータを固定し、その上でα(試料 のあおり角)とβ(試料の面内回転角)の2つのパラ メータを変化させて測定する.得られた強度分布から 試料内での結晶方位分布を把握することができる.極 点測定では、従来の0次元検出器を用いると、1つの

面指数の情報を取得するためには、それぞれの回折角 度ごとにゴニオメータを動かさなくてはならず、測定 時間が数時間~数十時間要する場合があった.対して HyPix-3000を用いると、広い有効検出面積のため、一 度に複数の面指数の情報が取得可能であり、さらに一 度の測定でα方向の情報も取得することができる. そ のため、0次元検出器を用いた測定と比較すると、測

図6. Nd磁石の2次元回折画像. (A):2θ=28°で露光 (α=30°) (B):2θ=41°で露光 (α=30°)

図7. Nd磁石の測定極点図と結晶方位分布解析(ODF解析)により再計算された測定指数の全極点図.

定時間を大幅に短縮することができる.図6にある2 つの回折角度により得られたNd磁石(Nd, Feを主成 分とした結晶の焼結体)の2次元回折像を示す.2つ の2次元回折像から,202,212,220,221,222, 311,224,313,410,合計9個の回折面の情報が取得 されているのが確認できる.0次元検出器を用いてそ れぞれの極点図を取得するには格子面ごとに測定する 必要があり,本測定と比較してはるかに時間がかか る.取得された2次元回折像から各指数の極点図を作 成し,結晶方位分布解析(ODF解析)により再計算 を行って測定指数の全極点図を作成した.結果を図7 に示す.2次元検出器の利用により,複数の面指数情 報を得ることで,短時間で全極点図を再計算すること ができる.

2.4. PLT 薄膜の広域逆格子マップ測定

薄膜材料は特にエレクトロニクスの分野を中心に多 く利用されているが、近年ではその機能性向上のた め,配向や結晶方位の制御が行われている.特に単結 晶基板上に結晶方位を揃えて成膜を行うエピタキシャ ル薄膜においては,結晶性や結晶の方位がデバイス特 性に大きく影響することから,それらの評価が重要で ある.X線回折法では,従来から逆格子マップ測定に よる結晶性や結晶方位の評価が行われてきたが,0次 元検出器を用いた場合には数時間もの測定時間を要し てしまう.このため,複数ある反射のうちある特定の 反射周囲のみの測定を行い,評価するのが一般的であ る.しかしながらこの方法では想定していない方位の ドメインが存在する場合,その有無についての評価す ることは困難となることが多い.

このように、想定されていないドメインの存在の確 認や、基板や積層されているその他の層とのエピタキ シャル方位関係の評価には、多くの反射情報が得られ る広域逆格子マップ測定が有効である。2次元検出機 を用いた測定ではその画像内に回折角度と結晶方位の

情報が一度に得られるので、短時間の測定で広い範囲 の逆格子マップを作成することが可能となる.ここで は広域逆格子マップ測定の例として、強誘電体材料で あるPLT((Pb, La) TiO₃)薄膜の評価例を紹介する. この材料は図8に示すような多層膜構造を有してい る.

測定の結果得られた広域逆格子マップ測定データを 図9に、また方位関係についての逆格子シミュレー ションを行った結果を図10に示す.測定結果とシミュ レーションの結果は完全に合致していることから、図

図8. 測定を行ったPLT薄膜の層構造.

図9. 測定により得られた PLT 薄膜広域逆格子マップ.

11に示すようなエピタキシャル方位関係となってお り、一部、ランダムな成分が見られるものの、その他 の方位関係のドメインなどは存在していないことがわ かる.また、Ptの反射に着目すると、その形状がス ポット状に観測されていることから結晶方位のばらつ き(通常、ロッキングカーブの幅で評価)が非常に小 さいことが予測される.一方、その上に積層されてい るPLTの反射は円弧方向に広がりが見られることから 結晶方位のばらつきがPtよりも大きいことがわかる. ソフトウエアを用いて幅を求めたところFWHMは4.5° 程度であることがわかった.

測定はHyPix-3000の2次元-TDI測定モード⁽¹⁾を利 用した.この測定モードの利用により2次元検出器で ありながら連続スキャンによる測定が可能となる.結 晶性の良いエピタキシャル膜や単結晶基板の回折線を 得るためには連続的に入射X線の角度が変化する本 モードでの測定が有効であり、わずか15分程度の測 定でも今回のような広域の逆格子マップ測定データを 得ることができた.

図11. 解析により得られたエピタキシャル方位 関係.

図10. PLT薄膜広域逆格子マップのシミュレーション. ▶:測定範囲を示す.

3. まとめ

HyPix-3000は2次元検出器としての機能のみなら ず、0次元、1次元検出器としても使用することがで き、SmartLabに搭載することで、本稿で示したよう な様々な測定に活用することができる.また本稿の測 定事例以外にも、広いダイナミックレンジ、低バック グラウンドでの測定、ゼロデッドタイムでの高速測定 などの利点を活かした測定も可能である(これら測定 事例については参考文献(2)を参照).このように、 HyPix-3000を用いることで、従来の検出器よりもはる かに短時間での測定が可能になり、今後の研究活動な どにおける用途が広がることが予想される.

参 考 文 献

- 小林慎太郎, 稲葉克彦: リガクジャーナル, 42 (2011), No. 1, 9–14.
- (2) リガクジャーナル: **45** (2014), No. 1, 26–28.
- (3) H. M. Rietveld: J. Appl. Cryst., 2 (1969), 65–71.
- (4) W. A. Dollase: J. Appl. Cryst., 19 (1986), 267–272.
- (5) 長尾圭吾, 鏡英理奈: リガクジャーナル, 41
 (2010), No. 2, 1-8.